100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

Solution Manual for Shigley's Mechanical Engineering Design: 2024 Release ISE by Budynas | All 20 Chapters Covered

Rating
5.0
(1)
Sold
2
Pages
746
Grade
A+
Uploaded on
20-06-2025
Written in
2024/2025

Solution Manual for Shigley's Mechanical Engineering Design: 2024 Release ISE by Budynas | All 20 Chapters Covered This comprehensive Solution Manual for *Shigley's Mechanical Engineering Design: 2024 Release ISE* by Budynas offers detailed step-by-step solutions to enhance understanding and application of mechanical design principles. Ideal for students and professionals seeking in-depth guidance on complex engineering problems, this manual supports rigorous academic study and practical design challenges in mechanical engineering. Shigley's Mechanical Engineering Design solution manual, Budynas mechanical design solutions, 2024 Shigley’s manual PDF, mechanical engineering design textbook solutions, Shigley’s design problems answers, mechanical design solution guide, engineering design 2024 edition solutions, Budynas mechanical engineering workbook, Shigley's mechanical design study aid, 2024 engineering design problem solutions, mechanical engineering textbooks solution manual, Shigley's 2024 edition solutions, mechanical engineering design exam preparation, Budynas engineering problems answers, mechanical design design process solutions, Shigley's design manual download, mechanical engineering design practice solutions, engineering design problems solved, mechanical engineering student guide solutions, Shigley's mechanical design textbook help, Budynas design manual solutions, engineering design problem sets 2024, Shigley's design textbook solution PDF, mechanical engineering coursework aids, engineering problem solution manuals #ShigleyMechanicalDesign #MechanicalEngineeringSolutions #BudynasEngineering #EngineeringDesign2024 #MechanicalDesignManual #EngineeringTextbookSolutions #MechanicalEngineeringStudyAid #Shigleys2024Edition #EngineeringProblemSolutions #MechanicalDesignStudyGuide

Show more Read less
Institution
Shigleys Mechanical Engineering Design
Course
Shigleys Mechanical Engineering Design

















Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Shigleys Mechanical Engineering Design
Course
Shigleys Mechanical Engineering Design

Document information

Uploaded on
June 20, 2025
Number of pages
746
Written in
2024/2025
Type
Exam (elaborations)
Contains
Questions & answers

Content preview

All 20 Chapters Covered




SOLUTION MANUAL

,TABLE OF CONTENTS
Part 1 - Basics
1) Introduction to Mechanical Engineering Design
2) Materials
3) Load and Stress Analysis
4) Deflection and Stiffness
Part 2 - Failure Prevention
5) Failures Resulting from Static Loading
6) Fatigue Failure Resulting from Variable Loading
Part 3 - Design of Mechanical Elements
7) Shafts and Shaft Components
8) Screws, Fasteners, and the Design of Nonpermanent Joints
9) Welding, Bonding, and the Design of Permanent Joints
10) Mechanical Springs
11) Rolling-Contact Bearings
12) Lubrication and Journal Bearings
13) Gears - General
14) Spur and Helical Gears
15) Bevel and Worm Gears
16) Clutches, Brakes, Couplings and Flywheels
17) Flexible Mechanical Elements
18) Power Transmission Case Study
Part 4 - Special Topics
19) Finite-Element Analysis
20) Geometric Dimensioning and Tolerancing

,www.FluidMechanics.ir www.konkur.in


Chapter 1

Problems 1-1 through 1-6 are for student research. No standard solutions are provided.

1-7 From Fig. 1-2, cost of grinding to  0.0005 in is 270%. Cost of turning to  0.003 in is
60%.
Relative cost of grinding vs. turning = 270/60 = 4.5 times Ans.
______________________________________________________________________________
1-8 C A = C B ,

10 + 0.8 P = 60 + 0.8 P  0.005 P 2

P 2 = 50/0.005  P = 100 parts Ans.
______________________________________________________________________________

1-9 Max. load = 1.10 P
Min. area = (0.95)2A
Min. strength = 0.85 S
To offset the absolute uncertainties, the design factor, from Eq. (1-1) should be

1.10
nd   1.43 Ans.
0.85  0.95 
2


______________________________________________________________________________

1-10 (a) X 1 + X 2 :
x1  x2  X 1  e1  X 2  e2
error  e   x1  x2    X 1  X 2 
 e1  e2 Ans.
(b) X 1  X 2 :
x1  x2  X 1  e1   X 2  e2 
e   x1  x2    X 1  X 2   e1  e2 Ans.
( c) X 1 X 2 :
x1 x2   X 1  e1  X 2  e2 
e  x1 x2  X 1 X 2  X 1e2  X 2 e1  e1e2
 e e 
 X 1e2  X 2 e1  X 1 X 2  1  2  Ans.
 X1 X 2 




Chapter 1 Solutions - Rev. B, Page 1/6



Forum.konkur.in

,www.FluidMechanics.ir www.konkur.in


(d) X 1 /X 2 :
x1 X 1  e1 X 1  1  e1 X 1 
   
x2 X 2  e2 X 2  1  e2 X 2 
1
 e2  e2  1  e1 X 1   e1   e2  e1 e
1    1    1 
then  1    1  2
 X2  X2  1  e2 X 2   X1   X2  X1 X 2
x X X  e e 
Thus, e  1  1  1  1  2  Ans.
x2 X 2 X 2  X 1 X 2 
______________________________________________________________________________

1-11 (a) x 1 = 7 = 2.645 751 311 1
X 1 = 2.64 (3 correct digits)
x 2 = 8 = 2.828 427 124 7
X 2 = 2.82 (3 correct digits)
x 1 + x 2 = 5.474 178 435 8
e 1 = x 1  X 1 = 0.005 751 311 1
e 2 = x 2  X 2 = 0.008 427 124 7
e = e 1 + e 2 = 0.014 178 435 8
Sum = x 1 + x 2 = X 1 + X 2 + e
= 2.64 + 2.82 + 0.014 178 435 8 = 5.474 178 435 8 Checks
(b) X 1 = 2.65, X 2 = 2.83 (3 digit significant numbers)
e 1 = x 1  X 1 =  0.004 248 688 9
e 2 = x 2  X 2 =  0.001 572 875 3
e = e 1 + e 2 =  0.005 821 564 2
Sum = x 1 + x 2 = X 1 + X 2 + e
= 2.65 +2.83  0.001 572 875 3 = 5.474 178 435 8 Checks
______________________________________________________________________________

16 1000  25 10 
3
S
1-12      d  0.799 in Ans.
nd d3 2.5
Table A-17: d = 78 in Ans.

S 25 103 
Factor of safety: n   3.29 Ans.
 16 1000 

3
 7
8

______________________________________________________________________________
n
1-13 Eq. (1-5): R =  Ri = 0.98(0.96)0.94 = 0.88
i 1
Overall reliability = 88 percent Ans.
______________________________________________________________________________


Chapter 1 Solutions - Rev. B, Page 2/6



Forum.konkur.in

,www.FluidMechanics.ir www.konkur.in


1-14 a = 1.500  0.001 in
b = 2.000  0.003 in
c = 3.000  0.004 in
d = 6.520  0.010 in
(a) w  d  a  b  c = 6.520  1.5  2  3 = 0.020 in
tw   tall = 0.001 + 0.003 + 0.004 +0.010 = 0.018
w = 0.020  0.018 in Ans.

(b) From part (a), w min = 0.002 in. Thus, must add 0.008 in to d . Therefore,

d = 6.520 + 0.008 = 6.528 in Ans.

______________________________________________________________________________

1-15 V = xyz, and x = a   a, y = b   b, z = c   c,

V  abc

V   a  a  b  b  c  c 
 abc  bca  acb  abc  abc  bca  cab  abc

The higher order terms in  are negligible. Thus,

V  bca  acb  abc

V bca  acb  abc a b c a b c
and,        Ans.
V abc a b c a b c

For the numerical values given, V  1.500 1.875  3.000  8.4375 in 3


V 0.002 0.003 0.004
    0.00427  V  0.00427  8.4375   0.036 in 3
V 1.500 1.875 3.000

V = 8.438  0.036 in3 Ans.
______________________________________________________________________________




Chapter 1 Solutions - Rev. B, Page 3/6



Forum.konkur.in

,www.FluidMechanics.ir www.konkur.in


1-16


w max = 0.05 in, w min = 0.004 in
0.05  0.004
w=  0.027 in
2
Thus,  w = 0.05  0.027 = 0.023 in, and then, w = 0.027  0.023 in.
w= a b c
0.027  a  0.042  1.5
a  1.569 in

tw = t all
 0.023 = t a + 0.002 + 0.005  t a = 0.016 in

Thus, a = 1.569  0.016 in Ans.

______________________________________________________________________________

1-17 Do  Di  2d  3.734  2  0.139   4.012 in

t Do   tall  0.028  2  0.004   0.036 in

D o = 4.012  0.036 in Ans.
______________________________________________________________________________

1-18 From O-Rings, Inc. (oringsusa.com), D i = 9.19  0.13 mm, d = 2.62  0.08 mm

Do  Di  2d  9.19  2  2.62   14.43 mm

t Do   tall  0.13  2  0.08   0.29 mm

D o = 14.43  0.29 mm Ans.
______________________________________________________________________________

1-19 From O-Rings, Inc. (oringsusa.com), D i = 34.52  0.30 mm, d = 3.53  0.10 mm

Do  Di  2d  34.52  2  3.53  41.58 mm

t Do   tall  0.30  2  0.10   0.50 mm

D o = 41.58  0.50 mm Ans.
______________________________________________________________________________

Chapter 1 Solutions - Rev. B, Page 4/6



Forum.konkur.in

,www.FluidMechanics.ir www.konkur.in


1-20 From O-Rings, Inc. (oringsusa.com), D i = 5.237  0.035 in, d = 0.103  0.003 in

Do  Di  2d  5.237  2  0.103  5.443 in

t Do   tall  0.035  2  0.003  0.041 in

D o = 5.443  0.041 in Ans.
______________________________________________________________________________

1-21 From O-Rings, Inc. (oringsusa.com), D i = 1.100  0.012 in, d = 0.210  0.005 in

Do  Di  2d  1.100  2  0.210   1.520 in

t Do   tall  0.012  2  0.005   0.022 in

D o = 1.520  0.022 in Ans.
______________________________________________________________________________

1-22 From Table A-2,

(a)  = 150/6.89 = 21.8 kpsi Ans.

(b) F = 2 /4.45 = 0.449 kip = 449 lbf Ans.

(c) M = 150/0.113 = 1330 lbf  in = 1.33 kip  in Ans.

(d) A = 1500/ 25.42 = 2.33 in2 Ans.

(e) I = 750/2.544 = 18.0 in4 Ans.

(f) E = 145/6.89 = 21.0 Mpsi Ans.

(g) v = 75/1.61 = 46.6 mi/h Ans.

(h) V = 1000/946 = 1.06 qt Ans.
______________________________________________________________________________

1-23 From Table A-2,

(a) l = 5(0.305) = 1.53 m Ans.

(b)  = 90(6.89) = 620 MPa Ans.

(c) p = 25(6.89) = 172 kPa Ans.

Chapter 1 Solutions - Rev. B, Page 5/6



Forum.konkur.in

,www.FluidMechanics.ir www.konkur.in

(d) Z =12(16.4) = 197 cm3 Ans.

(e) w = 0.208(175) = 36.4 N/m Ans.

(f)  = 0.001 89(25.4) = 0.0480 mm Ans.

(g) v = 1200(0.0051) = 6.12 m/s Ans.

(h)  = 0.002 15(1) = 0.002 15 mm/mm Ans.

(i) V = 1830(25.43) = 30.0 (106) mm3 Ans.
______________________________________________________________________________

1-24
(a)  = M /Z = 1770/0.934 = 1895 psi = 1.90 kpsi Ans.

(b)  = F /A = 9440/23.8 = 397 psi Ans.

(c) y =Fl3/3EI = 270(31.5)3/[3(30)106(0.154)] = 0.609 in Ans.

(d)  = Tl /GJ = 9740(9.85)/[11.3(106)( /32)1.004] = 8.648(102) rad = 4.95 Ans.

______________________________________________________________________________

1-25
(a)  =F / wt = 1000/[25(5)] = 8 MPa Ans.

(b) I = bh3 /12 = 10(25)3/12 = 13.0(103) mm4 Ans.

(c) I = d4/64 =  (25.4)4/64 = 20.4(103) mm4 Ans.

(d)  =16T / d 3 = 16(25)103/[ (12.7)3] = 62.2 MPa Ans.
______________________________________________________________________________

1-26
(a)  =F /A = 2 700/[ (0.750)2/4] = 6110 psi = 6.11 kpsi Ans.

(b)  = 32Fa/ d 3 = 32(180)31.5/[ (1.25)3] = 29 570 psi = 29.6 kpsi Ans.

(c) Z = (d o 4  d i 4)/(32 d o ) =  (1.504  1.004)/[32(1.50)] = 0.266 in3 Ans.

(d) k = (d 4G)/(8D 3 N) = 0.06254(11.3)106/[8(0.760)3 32] = 1.53 lbf/in Ans.

______________________________________________________________________________


Chapter 1 Solutions - Rev. B, Page 6/6



Forum.konkur.in

,www.FluidMechanics.ir www.konkur.in


Chapter 2

2-1 From Tables A-20, A-21, A-22, and A-24c,
(a) UNS G10200 HR: S ut = 380 (55) MPa (kpsi), S yt = 210 (30) Mpa (kpsi) Ans.
(b) SAE 1050 CD: S ut = 690 (100) MPa (kpsi), S yt = 580 (84) Mpa (kpsi) Ans.
(c) AISI 1141 Q&T at 540C (1000F): S ut = 896 (130) MPa (kpsi), S yt = 765 (111)
Mpa (kpsi) Ans.
(d) 2024-T4: S ut = 446 (64.8) MPa (kpsi), S yt = 296 (43.0) Mpa (kpsi) Ans.
(e) Ti-6Al-4V annealed: S ut = 900 (130) MPa (kpsi), S yt = 830 (120) Mpa (kpsi) Ans.
______________________________________________________________________________

2-2 (a) Maximize yield strength: Q&T at 425C (800F) Ans.

(b)Maximize elongation: Q&T at 650C (1200F) Ans.
______________________________________________________________________________

2-3 Conversion of kN/m3 to kg/ m3 multiply by 1(103) / 9.81 = 102
AISI 1018 CD steel: Tables A-20 and A-5
S y 370 10 
3

  47.4 kN  m/kg Ans.
 76.5 102 
2011-T6 aluminum: Tables A-22 and A-5
S y 169 10 
3

  62.3 kN  m/kg Ans.
 26.6 102 
Ti-6Al-4V titanium: Tables A-24c and A-5
Sy 830 103 
  187 kN  m/kg Ans.
 43.4 102 
ASTM No. 40 cast iron: Tables A-24a and A-5.Does not have a yield strength. Using the
ultimate strength in tension
Sut 42.5  6.89  10 
3

  40.7 kN  m/kg Ans
 70.6 102 
______________________________________________________________________________

2-4
AISI 1018 CD steel: Table A-5
E 30.0 10 
6

  106 106  in Ans.
 0.282
2011-T6 aluminum: Table A-5
E 10.4 10 
6

  106 106  in Ans.
 0.098
Ti-6Al-6V titanium: Table A-5

Chapter 2 - Rev. D, Page 1/19



Forum.konkur.in

, www.FluidMechanics.ir www.konkur.in

16.5 106 
 103 106  in
E
 Ans.
 0.160
No. 40 cast iron: Table A-5
E 14.5 10 
6

  55.8 106  in Ans.
 0.260
______________________________________________________________________________

2-5
E  2G
2G (1  v)  E  v
2G
From Table A-5
30.0  2 11.5 
Steel: v   0.304 Ans.
2 11.5 

10.4  2  3.90
Aluminum: v  0.333 Ans.
2  3.90

18.0  2  7.0 
Beryllium copper: v  0.286 Ans.
2  7.0 

14.5  2  6.0 
Gray cast iron: v
 0.208 Ans.
2  6.0 
______________________________________________________________________________

2-6 (a) A 0 =  (0.503)2/4,  = P i / A 0

For data in elastic range,  =  l / l 0 =  l / 2
l l  l0 l A
For data in plastic range,     1  0 1
l0 l0 l0 A
On the next two pages, the data and plots are presented. Figure (a) shows the linear part of
the curve from data points 1-7. Figure (b) shows data points 1-12. Figure (c) shows the
complete range. Note: The exact value of A 0 is used without rounding off.

(b) From Fig. (a) the slope of the line from a linear regression is E = 30.5 Mpsi Ans.

From Fig. (b) the equation for the dotted offset line is found to be

 = 30.5(106)  61 000 (1)
The equation for the line between data points 8 and 9 is
 = 7.60(105) + 42 900 (2)


Chapter 2 - Rev. D, Page 2/19



Forum.konkur.in

Reviews from verified buyers

Showing all reviews
2 months ago

5.0

1 reviews

5
1
4
0
3
0
2
0
1
0
Trustworthy reviews on Stuvia

All reviews are made by real Stuvia users after verified purchases.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
LectWoody Chamberlain College Of Nursng
View profile
Follow You need to be logged in order to follow users or courses
Sold
522
Member since
2 year
Number of followers
183
Documents
1050
Last sold
3 days ago

3.6

84 reviews

5
40
4
14
3
9
2
1
1
20

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can immediately select a different document that better matches what you need.

Pay how you prefer, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card or EFT and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions