100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

APM3701 Assignment 2 Memo | Due 8 August 2025

Beoordeling
-
Verkocht
-
Pagina's
15
Cijfer
A+
Geüpload op
17-06-2025
Geschreven in
2024/2025

APM3701 Assignment 2 Memo | Due 8 August 2025. Step-by-Step Calculations Provided. QUESTION 1 Consider the heat flow in an horizontal rod of length L units and heat conductivity 1. We assume that initially the rod was submerged in a meduim where the temperature at each point x of the rod is described by the function f (x) . We also suppose that the left and the right ends of the rod are in contact with media which temperatures change with time and are described by the functions g1 (t) and g2 (t) respectively. (a) Write down the initial-boundary problem satisfied by the temperature distribution u (x, t) in the rod at any point x and time t (Explain all the meaning of the variables and parameters used). (5 Marks) (b) Suppose that f, g1, g2 are bounded, there exist constants m and M such that for all x in the domain of g1 and g2, and all t ≥ 0, we have m ≤ f (x) ≤ M;m ≤ g1 (x) ≤ M;m ≤ g2 (x) ≤ M; and the temperature u (x, t) solution of the IBVP described above satisfies the inequalities m ≤ u (x, t) ≤ M; for all x and t ≥ 0. Show that the solution u (x, t) of the heat problem described above is unique. (Explain clearly all the steps (10 Marks) (c) Suppose that u1 (x, t) and u2 (x, t) are solutions of the heat problem above (with different initial and boundary conditions) are such that u1 (0, t) ≤ u2 (0, t) , u1 (L, t) ≤ u2 (L, t) , and u1 (x, 0) ≤ u2 (x, 0) . Show that u1 (x, t) ≤ u2 (x, t) for all 0 ≤ x ≤ L and all t ≥ 0. (10 Marks) [25 Marks] QUESTION 2 Find the displacement u (x, t) of a semi–infinite vibrating string, if the finite end is fixed, the initial velocity is zero and the initial displacement is xex at every point x of the string. (Explain all the details) [25 Marks] QUESTION 3 When there is heat transfer from the lateral side of an infinite cylinder of radius a into a surrounding medium, the temperature inside the rod depends upon the time t and the distance r from its longitudinal axis (i.e. the axis through the centre and parallel to the lateral side). (a) Write down the partial differential equation that models this problem. (4 Marks) (b) Suppose that the surrounding medium is ice (at temperature zero) and the initial temperature is constant at every point. Derive the initial and boundary conditions. [Hint: For the boundary condition use Newton’s law of cooling.] (7 Marks) (c) Solve the initial boundary value problem obtained in (a) and (b). (14 Marks) [25 Marks] QUESTION 4 Find the displacement u (r, t) of a circular membrane of radius c clamped along its circumference if its initial displacement is zero and the circular membrane is given an constant initial velocity v in the upward direction. [25 Marks] TOTAL: [100 Marks]

Meer zien Lees minder
Instelling
Vak









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Gekoppeld boek

Geschreven voor

Instelling
Vak

Documentinformatie

Geüpload op
17 juni 2025
Aantal pagina's
15
Geschreven in
2024/2025
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

, PLEASE USE THIS DOCUMENT AS A GUIDE TO ANSWER YOUR ASSIGNMENT

 QUESTION 1

A) Initial-Boundary Value Problem (IBVP) and Explanation

We are modeling heat flow in a one-dimensional rod of length L, with heat conductivity,;, = 1. Let u(x, t)
denote the temperature at position x E [O, L] and time t > 0.

Initial-Boundary Value Problem (IBVP):

/Ju fPu
= t):,;2 ,
i)t 0 < x < L, t > 0
u(O,t) = g1(t), t > 0 (left boundary condition)
u(L, t) = g2(t), t > 0 (right boundary condition)
u(x,O) - f(x) , 0 < x < L (initial condition)

Explanation of variables and parameters:

• u(x, t): Temperature at position x and time t
• x: Spatial position along the rod, x E [0~L]
• t: Time, t >0
• L : Length of the rod

• f (x ): Initial temperature distribution along the rod
• g1(t): Temperature at the left end (x = 0) as a function of time

• g2(t ): Temperature at the right end (:t = L) as a function of time

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
Aimark94 University of South Africa (Unisa)
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
6575
Lid sinds
6 jaar
Aantal volgers
3168
Documenten
1326
Laatst verkocht
2 weken geleden
Simple &amp; Affordable Study Materials

Study Packs &amp; Assignments

4.2

520 beoordelingen

5
277
4
124
3
74
2
14
1
31

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen