100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary Food Microbiology FHM-20306

Rating
4.0
(1)
Sold
8
Pages
36
Uploaded on
20-09-2020
Written in
2019/2020

Summary Food Microbiology (FHM-20306). The summary is quite extensive but contains all information needed to successfully pass the exam. The summary contains figures and (parts of) the lecture slides for better understanding of certain topics and processes.

Show more Read less
Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
September 20, 2020
Number of pages
36
Written in
2019/2020
Type
Summary

Subjects

Content preview

Food Microbiology summary
Spoilage

Microbial spoilage: Mostly metabolic products produced during growth (smell, slime, colour change), but
sometimes also microbes themselves (mould). Spoilage becomes notable at 107 cells per gram/mL food. Shelf
life depends on initial contamination (N0) and growth time (µ).

Initial contamination: Primary contamination of raw materials (animals and plants) and secondary
contamination (water, equipment, air, people, vermin)

Microbial growth:
! Food is spoiled before the stationary phase is reached




Micro-organisms:
1. Bacteria:
- Cocci (coc, duplococ, streptococ, staphylococ) ±1µm
- Rods (rod, rod with flagella, rod with endospore) ±0.6-0.8 x 1-5 µm
- Other shapes (vibrio, spirilli)
2. Yeasts – unicellular organisms (with buds) ±10µm
3. Filamentous fungi – multicellular organisms (with spores)
4. Virus – strictly no micro-organism, as it needs a host to multiply ±25-30nm

Microorganisms are everywhere, but the environment selects: A suitable environment has resources needed
for growth (nutrients) and physio-chemical conditions that don’t hinder the organism

Generation time (GT) – time needed for the population to double (t = 0 → 20 = 1 cell, t = 5 → 25 = 32 cells)
GT = ln(2)/µ

Exponential growth is log-linear growth: Growth rates on log10 and ln scale:




1

,Growth kinetics: study of increase of cell number in time (growth rate)




Growth rate influenced by:
- Intrinsic factors (physio-chemical properties of food, such as nutrients, pH, water activity and
preservatives)
- Extrinsic factors (properties of food environment, such as temperature, relative humidity and gas
composition)
- Implicit factors (properties and interactions of micro-organisms, such as umax, interactions,
succession in time)
- Processing (changes of food/environment/micro-organisms to preserve or to process to desired
product)

Growth rates of micro-organisms:




Micro-organisms have metabolism like humans do (except viruses):
- Catabolism – metabolic routes involved in degradation of an energy and carbon source to generate
precursors for cell components and energy for cell maintenance
- Anabolism – metabolic routes involved in biosynthesis of polymeric cell compounds (DNA, RNA,
protein, lipids, cell wall constituents)

Most micro-organisms are chemo-heterotrophs: They use preformed molecules from other organisms as
energy and carbon source.

Antimicrobial barriers hinder growth by ensuring lack of access to water and nutrients:
- Physical barrier (shell of nuts)
- Macromolecules, resistant to degradation (peel of fruit or fatty lining of meat)
! Antimicrobial barriers do not protect against the environment (UV)

Microbial enzymes can degrade barriers and release nutrients: pectolytic enzymes act on pectine, amylolytic
on starch, lipolytic on lipids, proteolytic on protein.

We can change a food by product formulation (increase or decrease nutrients, such as fermenting) and
processing (introduce or remove barriers, such as compartmentalization)

pH preferences micro-organisms:




2

,Types of micro-organisms – pH preference:
- Acidophile – 0 - 5.5
- Neutrophile – 5.5 – 8
- Alkalophile – 8 - 11.5

Pumping out protons of the cell requires energy and slows down
growth:




The type of acid is of relevance:
The higher the pKa, the higher
the effect of HA pumped into
the cell and there dissociating
and lowering the inside pH
! Weak acids therefore work the
best against micro-organisms
pH applications in food preservation:
- Fermentation – use of lactic acid bacteria to produce weak acids that lower the pH and inhibit
growth of pathogenic bacteria
- Acidic preservative – add acid to lower the pH

Pitfalls of pH in food preservation:
- Pathogenic bacteria can grow in low-acid foods
- Other microorganisms grow and increase the pH (yeasts and moulds dissimilate acid > acid-tolerant
bacteria can grow > pathogenic bacteria can grow)

Redox potential (Eh) – tendency of a medium to accept or donate electrons (oxidator + e- + H+ <-> reductor).
Electron donors (H2) have a negative potential. Electron acceptors (O2) have a positive potential.
! Whole grain wheat and meat have a negative Eh. Spinach, lemons and pears have a positive Eh.

Oxygen from the air can act as an electron acceptor (oxidator), yielding reactive substances:
- O2 + 2H+ + 2e- -> H2O2 (hydrogen peroxide)
- O2 + e- -> O2- (superoxide anion radical)

Aerobic organisms:
- Most energy via oxidative phosphorylation with O2 as terminal electron acceptor
- Enzymes disable toxic byproducts (Superoxide dismutase (SOD) O2- > H2O2 and catalase H2O2 > H2O)
Anaerobic organisms:
- No SOD or catalase, thus no growth at high redox potentials (in presence of O2)

Types of micro-organisms – oxygen preference:




3

, The redox potential of foods may change due to:
- Higher access to O2 results in a higher Eh (e.g. after milling or grinding)
- Lowering O2 content results in a lower Eh (e.g. after canning or fermenting)
- Low pH: many H+, so a higher Eh (Nernst equation Eh = E’0 + (RT/nF)*ln((oxidator*H+)/(redactor))
- Microbial growth: less O2, resulting in a lower Eh

Growth inhibition by CO2: CO2 dissolves -> CO2 + H2O <-> H2CO3 (carbonic acid) <-> H+ + HCO3- (bicarbonate):
! Growth inhibition by CO2 has a larger effect with some O2 present than without, and has a larger effect at
low temperatures, due to a higher solubility at lower temperatures.
! Moulds and oxidative Gram- bacteria are most sensitive to CO2, where yeasts and Gram+ bacteria are most
resistant to CO2.

Vacuum packaging – exclude all air from the package. Residual respiration of the product and micro-organisms
consumes the last O2 present. High levels of CO2 develop and inhibit flora.

MAP (modified atmosphere packaging) – increasing CO2 concentration and decreasing O2 concentration
- Atmosphere changes during storage because of respiration of the product, micro-organisms and
permeability of the packaging to gases
CAP (controlled atmosphere packaging) – used for large storage rooms
- Atmosphere kept constant

Water activity (aw) – measure of free water in a food product
aw = P/P0 = 1/100*ERH
P – partial vapour pressure of the food at temperature T
P0 – vapour pressure of pure water at temperature T
ERH – equilibrium relative humidity in % at temperature T
! aw is an intrinsic factor while RH is an extrinsic factor

aw of food products:




Types of micro-organisms – water activity: Preservation pitfall 1: Non-microbial spoiling:




! Generally, Gram+ bacteria are able to grow at a lower aw than Gram- bacteria

4

Reviews from verified buyers

Showing all reviews
4 year ago

4.0

1 reviews

5
0
4
1
3
0
2
0
1
0
Trustworthy reviews on Stuvia

All reviews are made by real Stuvia users after verified purchases.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
rtew Wageningen University
Follow You need to be logged in order to follow users or courses
Sold
50
Member since
5 year
Number of followers
39
Documents
19
Last sold
3 months ago

4.3

4 reviews

5
1
4
3
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions