verkettete Funktion
m
t
emx
t + +
(emx
+
emx dx
+
1) f(x) = = + c
Bsp : f(x) = e4
+ -
1(e
+ -
1dx = Ge - 1
+ c
Probe : F(x) = Ge" - 1
+ C
F(x) = Y"* -
1
.
4 =
e
4x -
1
U
2) f(x) =
mx + z (m + dx = m (n((mx + +)) + c
1
Bsp ..
f(x) = 3x + 2(xx + 2dx = -(n((3x + 2)) + c
Probe : F(x) =
⑤(n((xx + 2)) + c
1
5 3x
1
F'(x) =
-
+ 2
.
3 =
5 -
3x + 2
=
3x + 2
b) f(x) = -
y 1( 4y + -
+ 1dx =
-
-(n)) -
4x + 1)) + c
f'(x)
3) f(x) =
f(x) (dx = In ((f(x))) +
Bsp : f(x) = (dx =
in((3x4) + c
Probe : F(x) = In (3x2)
1
6X
6x 3x
F(x)
=
3x2
.
=
3x2
b)(x
- 8x
- 4x + 1dx = (n((x 4x + 1)) - + c
= (d (E .
1
E
3x -
4) dx in((3x 1))
f(x) 2x
.
=
3x - 2x + 1 = = - + +
Probe : F(x) = =(n(3x2 -
2x + 1) + c
6x 2
E . 13
1
-
F(x) =
E -
3x -
2x +1
.
6x -
2 =
=
3x2 -
2x + 1
f(x)
· nicht vom Typ f(x)
5) Si)dx ·
Typ
f'(x)
f(x)
nicht herstellbar
<
Polynomdivision
1
x2 (x 1) 1
Ex
:
- =
x + + x -
1
-
(x
-
- x)
X
((x + 1 + xy)dx =
+ x + -(n)(x -
1)) + c
-
(x - 1)
↑ 1