100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Inleiding econometrie Nederlandse samenvatting (cijfer: 9,2)

Rating
-
Sold
7
Pages
25
Uploaded on
31-08-2020
Written in
2018/2019

Dit is een Nederlandse samenvatting (boek & hoorcolleges) van het vak Inleiding econometrie. Voor dit vak heb ik een 9,2 behaald.

Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Study
Course

Document information

Summarized whole book?
No
Which chapters are summarized?
Hoofdstuk 1 t/m 14 m.u.v. h2 en h3.
Uploaded on
August 31, 2020
Number of pages
25
Written in
2018/2019
Type
Summary

Subjects

Content preview

Inleiding econometrie
STATA commando’s
Commando’s Beschrijving
describe Geeft een basis beschrijving van de dataset
browse Geeft je de mogelijkheid om direct de data
te bekijken
summarize evt.(, detail) → om bijv. Geeft een samenvatting van de
mediaan te berekenen beschrijvende statistiek van alle variabelen
(gemiddelde, standaarddeviatie etc.)
replace Vervangt waardes van een gegeven
Voorbeeld: replace smoke = . if variabele (als er bijv. verkeerde waardes
smoke == -8 staan in de samenvatting)
generate Maakt nieuwe variabelen aan
Voorbeeld: generate
fifty_plus=(age>=50) if age!=.
drop (variabele) Laat variabelen of observaties vallen uit de
dataset
rename (oude naam) (nieuwe naam) Geeft een nieuwe naam aan een variabele
tabulate (variabele) (evt. Genereert one of two-way tabellen
andere variabele)
histogram (variabele) Genereert een histogram
correlate (variabele) (andere Geeft de correlatie, ook gebruiken voor
variabele) evt. (, covariance) covariantie
scatter (variabele) (andere Geeft een puntgrafiek
variabele)
mean Geeft gemiddelde van variabelen
Bijv. mean diast_bp, over(wealth)
→ dit geeft de gemiddeldes van diast_bp
voor verschillende groepen van wealth
ttest Voert een t-test uit
regress y x1 x2, robust Voert regressie uit
Test Test hypotheses na regressie (F-test)
ivregress 2sls y x1 x2 etc. Gebruiken bij instrumentele variabele
(endogene variabele = iv)
probit y x, robust Probit model
logit y x, robust Logit model
tsset (variabele), weekly Maakt een tijdvariabele aan
sort (variabele) (variabele) Sorteert data
pwcorr (variabele) (andere Gebruik je als je variabele met vertraagde
variabele) waarde wilt correleren
corrgram variabele, lags(…) Laat autocorrelatie zien
estat ic Laat informatiecriteria (BIC/AIC) zien
arima y x1, ar(…/…) robust Gebruik voor ARIMA model
regress y x1 x2 Voert regressie met sample gewichten uit
[aweight=weight], robust (negatief = over gerepresenteerd, positief =
onder gerepresenteerd)

,Hoofdstuk 1
Data
Er zijn twee typen data:
* Experimentele data → komt van experimenten die ontworpen zijn om behandelingen of
beleid te evalueren (het onderzoeken van een causaal effect)
* Observationele data → komt van het observeren van mensen (enquête, statistieken)

Datasets komen in 3 verschillende vormen:
* Cross-sectionele data
Data dat verzameld wordt door veel subjects (mensen/bedrijven etc.) te
onderzoeken tijdens één periode.
* Tijdseries data
Data van één subject die verzameld wordt tijdens meerdere periodes.
* Panel data
Een combinatie van de bovenstaande typen data; data wordt verzameld door
meerdere subjecten te onderzoeken tijdens meerdere periodes.

Operationalisatie vs. conceptualisatie
Conceptualisatie = het proces waarbij er gespecifieerd wordt wat er bedoeld wordt met
bepaalde begrippen.
Operationalisatie = de manier waarop begrippen meetbaar gemaakt worden (= het vertalen
van een theoretisch begrip naar meetbare gegevens, zoals intelligentie).
Voorbeeld: individuen die meer verdienen, kennen ook hogere opportunity kosten wanneer
ze ziek zijn. Zij hebben dus hogere incentives om gezond te leven.
* Conceptualisatie → loon en/of gezondheid (fysiek/mentaal)).
* Operationalisatie → in het geval van fysieke gezondheid; “Hoeveel moeite heb je
met lopen?”. Wat is de meeteenheid; loopsnelheid of grip?

Hoofdstuk 4
Regressie = laat het verband zien tussen 2 variabelen.
Lineaire regressie = waarden van Y via een lineair verband voorspellen uit die van X. Y is de
afhankelijke variabele, X is de onafhankelijke variabele.

Covariantie




Correlatie
* rxy = +1 → perfect positief gecorreleerd
* rxy = 0 → niet gecorreleerd
* rxy = -1 → perfect negatief gecorreleerd

,Enkelvoudig lineair regressiemodel
- Hoe beïnvloedt variabele X variabele Y?
Model → Yi = 0 + 1Xi + ei
Y = response variabele, X = verklarende variabele
0/1 = coëfficiënten (0 = intercept, 1 = helling van de lijn)
ei = error term (andere factoren dan X die variabele Y
beïnvloeden)
Het eerste gedeelte van de formule wordt de populatie
regressielijn genoemd. Dit is het gemiddelde verband tussen Y
en X (→ E(Yi|Xi) = 0 + 1Xi).

Echter, zijn de coëfficiënten 0 en 1 niet bekend. Hiervoor gebruik je de ordinary least
squares (OLS) om deze waarden te voorspellen. De regressielijn past goed bij de data als Ŷ
dicht bij de geobserveerde waardes Yi liggen →dat is mogelijk als de residuen ei zo klein
n
2
mogelijk zijn! Dus verkrijg 0 en 1 door ∑ ( Y i− β^ 0− β^ 1 X i ) .
i=1
s xy
Exacte formules: * OLS schatter van 1:
s 2x
* OLS schatter van 0: Ý − ^β1 X́
(Ý en X́ zijn de sample gemiddeldes van X en Y)
* De OLS gefitte waardes zijn: Y^ i= β^ 0 + β^ 1 X i
* De OLS residuen zijn: e^ i=Y i−Y^ i
Dus geobserveerde waardes zijn gelijk aan: Yi = Y^ i + e^ i
(verklaard) (onverklaard)

Measures of fit
Wanneer je een lineaire regressielijn hebt geschat, wil je weten hoe goed de lineaire
regressie de werkelijke regressie beschrijft. Dit doe je door R2 te gebruiken,
ESS
R2 = X verklaart …% van de variantie in Y =
TSS
n
2
ESS = variantie dat voorspelt wordt door het model = ∑ ( Y^ i−Ý )
i=1
n
2
TSS = totale variantie = ∑ ( Y i−Ý )
i=1
2
0 < R < 1: R = 1 → het model voorspelt Yi perfect (Y^ i = Y i)
2



SER = standaarderror van de regressie; het schat de standaarddeviatie van de foutterm e i.
n
1 SSR
SER = se = √ s 2e met s2e = ∑ e^ 2i =
n−2 i=1 n−2
SSR = variantie dat niet voorspelt wordt door het model
Als SER groot is, dan verschillen de voorspellingen vaak van de daadwerkelijke waardes.

Assumpties van OLS
- De verdeling van ei heeft een gemiddelde van 0 → E(ei|Xi) = 0
Dit impliceert dat ei en Xi niet gecorreleerd zijn. Bovendien geldt dan ook dat Xi niet
gecorreleerd is met andere factoren die Yi beïnvloeden.
Hoe weet je dat aan deze assumpties voldaan wordt?

, * Als de steekproef willekeurig is

- Observaties (X1, Y1), (X2, Y2), … zijn onafhankelijk en identiek verdeeld (= dezelfde
verdeling)
Aan deze assumptie wordt voldaan als de steekproef willekeurig is getrokken:
* (Xi, Yi) hebben dezelfde verdeling → vanuit dezelfde populatie getrokken
* Willekeurige selectie zorgt voor onafhankelijkheid
Wanneer wordt hier niet aan voldaan?
* Afhankelijke observaties → wanneer observaties gedaan worden over dezelfde
unit van observaties over tijd (= observaties die snel achter elkaar gedaan worden,
zijn niet onafhankelijk maar zijn geneigd gecorreleerd te zijn aan elkaar)
* Steekproef is niet representatief
- Grote outliers van X en Y zijn onwaarschijnlijk
Bron van outliers zijn datafouten (bijv. typfout)

Steekproeftrekking distribution van OLS schatters
Omdat OLS schatters ^β 0 en ^β 1 berekend zijn d.m.v. een willekeurige steekproef, zijn de
schatters zelf willekeurige variabelen met een kansverdeling. Door een andere steekproef te
gebruiken, zullen de schatters ook weer anders zijn.
De verdeling van ^β 0 en ^β 1kan bepaald worden door:
* Alle mogelijke steekproeven te nemen van de populatie
* OLS voor elke steekproef gebruiken

Bij een grote steekproef, volgt ^β 1 een normale verdeling (central limit theorem).

Gemiddelden van de OLS schatters en unbiasedness
Onder de OLS assumpties, geldt dat E( ^β 0)= 0 en E( ^β 1)= 1. Dit houdt in dat ^β 0 en ^β 1 unbiased
schatters zijn van 0 en 1.

Volledige verdeling van ^β 0 en ^β 1
Volgens de central limit theorem, geldt bij grote steekproeven:
* ^β 0 volgt een normale verdeling
* ^β 1volgt een normale verdeling
* ( ^β 0, ^β 1) volgt een bivariate normaalverdeling

Conclusie: als er voldaan wordt aan de assumpties van het lineaire regressiemodel, dan zijn
de OLS schatters ^β 0 en ^β 1:
* Unbiased
* Consistent
* Normaalverdeeld als de steekproef groot is (n>100)

Interpretatie van regressiecoëfficiënt
Model: Yi = 0 + 1Xi + ei
Conditionele verwachting van Y, gegeven X:
E(Yi|Xi) = E(0 + 1Xi + ei|Xi) = 0 + 1Xi + E(ei|Xi) (→ = 0, zie assumptie 1)
Dus: E(Yi|Xi) = 0 + 1Xi

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
sanneerasmus Erasmus Universiteit Rotterdam
Follow You need to be logged in order to follow users or courses
Sold
201
Member since
5 year
Number of followers
87
Documents
20
Last sold
3 weeks ago
Economie en Bedrijfseconomie &amp; Accounting, Auditing and Control samenvattingen en uitwerkingen.

Hi! Ik ben Sanne en heb de Bachelor Economie en Bedrijfseconomie gehaald met een 8,1 gemiddeld. Daarnaast ben ik Cum Laude geslaagd voor de Master Accounting, Auditing and Control (8,6 gemiddeld). Hierbij de samenvattingen waar ik de afgelopen jaren veel aan gehad heb, succes!

3.4

23 reviews

5
4
4
9
3
6
2
1
1
3

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions