100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4,6 TrustPilot
logo-home
Tentamen (uitwerkingen)

Solution Manual for Linear Algebra and Optimization for Machine Learning 1st Edition by Charu Aggarwal, All 11 Chapters Covered, Verified Latest Edition

Beoordeling
-
Verkocht
-
Pagina's
204
Cijfer
A+
Geüpload op
15-05-2025
Geschreven in
2024/2025

Solution Manual for Linear Algebra and Optimization for Machine Learning 1st Edition by Charu Aggarwal, All 11 Chapters Covered, Verified Latest Edition Solution Manual for Linear Algebra and Optimization for Machine Learning 1st Edition by Charu Aggarwal, All 11 Chapters Covered, Verified Latest Edition Test bank and solution manual pdf free download Test bank and solution manual pdf Test bank and solution manual pdf download Test bank and solution manual free download Test Bank solutions Test Bank Nursing Test Bank PDF Test bank questions and answers

Meer zien Lees minder
Instelling
Linear Algebra & Optimization For Machine Learning
Vak
Linear Algebra & Optimization for Machine Learning











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Linear Algebra & Optimization for Machine Learning
Vak
Linear Algebra & Optimization for Machine Learning

Documentinformatie

Geüpload op
15 mei 2025
Aantal pagina's
204
Geschreven in
2024/2025
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

  • 9783030403447

Voorbeeld van de inhoud

SOLUTION MANUAL
Linear Algebra and Optimization for Machine
Learning
1st Edition by Charu Aggarwal. Chapters 1 – 11




vii

,Contents


1 Linear Algebra and Optimization: An Introduction
U J M U J M U J M U J M U J M 1


2 Linear Transformations and Linear Systems
U J M U J M U J M U J M 17


3 Diagonalizable Matrices and Eigenvectors U J M U J M U J M 35


4 Optimization Basics: A Machine Learning View UJM UJM U JM UJM UJM 47


5 Optimization Challenges and Advanced Solutions U J M U J M U J M U J M 57


6 Lagrangian Relaxation and Duality U J M U J M U J M 63


7 Singular Value Decomposition U J M U J M 71


8 Matrix Factorization U J M 81


9 The Linear Algebra of Similarity
U J M U J M U J M U J M 89


10 The Linear Algebra of Graphs
U J M U J M U J M U J M 95


11 Optimization in Computational Graphs U J M U J M U J M 101




viii

,Chapter U J M 1

Linear Algebra and Optimization: An Introduction
UJ M UJ M UJ M UJ M UJ M




1. For any two vectors x and y, which are each of length a, show that
U J M U J M U J M U J M U J M U J M U J M U J M U J M U J M U J M U J M U J M U J M




U (i) x − y is orthogonal to x+y, and (ii) the dot product of x − 3y and x+3y
J M U J M UJM UJM U J M UJ M U JM UJ M UJM UJM U J M U JM U J M U JM UJM UJ M UJM UJM UJM U J M U JM UJM UJM U J M




is negative. U J M




(i) The first is simply· x −x y y using the distributive property of matrix m
UJM UJM UJM UJM
U
UJM
J M
U J M
U
U J M U J M UJM UJM UJM UJM UJM UJM UJM




ultiplication. The dot·product of a vector with itself is its squared length. Sin UJM UJM
J M



UJM UJM UJM UJM UJM UJM UJM UJM UJM UJM UJM




ce both vectors are of the same length, it follows that the result is 0. (ii) In the
UJM UJM UJM UJM UJM UJM UJM UJM UJM UJM UJM UJM UJM UJM UJM UJM UJM UJ




second case, one can use a similar argument to show that the result is a2 − 9a
M UJM UJM UJM UJM UJM UJM UJM UJM UJM UJM UJM UJM UJM UJM U JM UJM




2, which is negative.
UJM UJM UJM




2. Consider a situation in which you have three matrices A, B, and C, of sizes U J M U J M U J M U J M U J M U J M U J M U J M U J M U J M U J M U J M U J M U J M U J M




10×2, 2×10, and 10×10, respectively.
UJM UJM U JM UJM UJM UJM UJM UJM UJM UJM




(a) Suppose you had to compute the matrix product ABC. From an efficiency pe UJ M U JM UJ M UJ M UJM U JM U JM UJM UJ M UJ M UJ M UJM




r-
spective, would it computationally make more sense to compute (AB)C or woul
UJM UJM UJM UJM UJM UJM UJM UJM UJM UJM UJM UJM




d it make more sense to compute A(BC)?
UJM U JM U JM UJ M UJ M UJ M U JM




(b) If you had to compute the matrix product CAB, would it make more sense to
UJM UJM U JM UJ M UJM UJ M U JM UJM U JM UJ M UJ M UJ M U JM UJM U JM




compute (CA)B or C(AB)? U J M U J M U J M




The main point is to keep the size of the intermediate matrix as small as p
UJM UJM UJM UJM UJM UJM UJM UJM U JM UJM UJM UJM UJM UJM UJ M




ossible inorder to reduce both computational and space requirements. I U J M UJM UJM UJM UJM UJM UJM UJM UJM UJM




n the case of ABC, it makes sense to compute BC first. In the case of CAB it
UJM UJM UJM UJM UJM UJ M UJM UJM UJM UJM UJM UJM UJM UJM UJ M UJM UJ M UJM




makes sense to compute CA first. Thistype of associativity property is use UJM UJM UJM UJM UJM UJM UJM UJM UJM UJM UJM UJM




d frequently in machine learningin order to reduce computational require
UJM UJM UJM UJM UJM UJM UJM UJM UJM UJM




ments.
3. — A =
Show that if a matrix A satisfies U J M U J M U J M U J M U J M U J M U J M U J M




AT, then all the diagonal elements of t UJM U J M U J M U J M U J M U J M U J M U J M




he matrix are 0. UJM UJ M U JM




NotethatA+AT=0.However,thismatrix also contains twice the diagonal UJM UJM UJM UJM UJM UJM UJM UJM UJM UJM UJM UJM UJM UJM UJM




elements of A on its diagonal. Therefore, the diagonal elements of A mus UJM U JM UJM UJM UJM UJM UJM UJM UJM UJM UJM UJM




t be 0. UJM UJ M




4. Show that if we have a matrix satisfying A
—= UJ M UJ M U JM U JM U JM U JM U JM U JM UJM




1

, AT, then for any column vector x, we
UJM UJM UJM UJ M U JM U JM UJ M U JM UJ




have x Ax = 0.
M U J M
T
U JM U JM U JM




Note that the transpose of the scalar xTAx remains unchanged. Theref
U J M U J M U J M U J M U J M U J M U J M UJM U J M U J M U J M




ore, we have
U J M U J M




xTAx = (xTAx)T = xTATx = −xTAx. Therefore, we have 2xTAx = 0.
UJM U JM U JM UJM U J M U JM UJM UJM U JM U JM UJM U J M U J M U J M U J M UJM U JM U JM




2
$23.49
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
certifiedlecturer

Maak kennis met de verkoper

Seller avatar
certifiedlecturer stuvia
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
4
Lid sinds
8 maanden
Aantal volgers
1
Documenten
313
Laatst verkocht
2 maanden geleden
TEST BANKS HUBS A+

IF IN NEED FOR QUALITY TEST BANKS AND STUDY MATERIALS LOOK NO FURTHER !! OUR PRODUCTS ARE OF QUALITY SO BUY WITHOUT DOUBT . EXPECT TOP FIRST HAND CUSTOMER SERVICE BECAUSE WE ARE HERE FOR YOU .AT TEST BANKS HUBS !! YOUR HOME FOR QUALITY STUDY MATERIALS!!

0.0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen