100% Zufriedenheitsgarantie Sofort verfügbar nach Zahlung Sowohl online als auch als PDF Du bist an nichts gebunden 4.2 TrustPilot
logo-home
Zusammenfassung

ECB3AMT Applied Micro-econometric Techniques Full Summary

Bewertung
-
Verkauft
1
seiten
66
Hochgeladen auf
21-04-2025
geschrieben in
2024/2025

This summary is written for the course ECB3AMT. This course is part of the dedicated minor Applied Data Science.

Hochschule
Kurs











Ups! Dein Dokument kann gerade nicht geladen werden. Versuch es erneut oder kontaktiere den Support.

Schule, Studium & Fach

Hochschule
Studium
Kurs

Dokument Information

Hochgeladen auf
21. april 2025
Anzahl der Seiten
66
geschrieben in
2024/2025
Typ
Zusammenfassung

Themen

Inhaltsvorschau

Applied Micro-econometric Techniques

2024-2025

Utrecht University

, Applied Micro-econometric Techniques

Topic 0: Introduction
What is this course about?

- Cause-and-effect relationships

Questions we ask:

- What is the effect of price on sales
- How do marketing campaigns affect sales
- How do business strategies affect returns
- How do active labour market policies affect participants
- How does trade with China affect Dutch labour market?
- How does the introduction of robots affect firm productivity

The Gold Standard:

- This term refers to methods or approaches considered the most reliable and
accurate for establishing causal relationships
- A Randomized experiment is often regarded as the “Gold Standard”
- Some reasons why (added content)
o Random assignment
 To treatment and control groups
o Control of confounders
 Balances observed and unobserved characteristics
o Clear counterfactuals
 Control group represents what would have happened to the
treatment group in absence of treatment
- Yet, this is often infeasible in economics and business.

In this course we focus on experiments and quasi-experiments

- Natural experiments: assignment criterion occurs ‘naturally’ (without researcher
intervention)
- Quasi-experiments: criterion for assignment is selected by the researcher

Position in the program

- Regression




- ADAVE I and II looks at correlation and prediction
o Focuses on Y and Ŷ
- AMT looks at causal relationships between β and β^
o We disregard statistics like R2 in causal analysis
o We are more concerned whether our research design provides a credible
estimate of our population parameter


2

, Applied Micro-econometric Techniques
Topic 1: Regression
1. Correlation versus causality




Correlation does not imply causality

- Left panel shows a correlation between US spending on science and suicides.
Even though there is a correlation, it doesn’t necessarily imply a causal effect of
increased spending on suicides
- Right panel shows a less close correlation of Japanese cars sold in the US and
suicides by the crashing of motor vehicles.
- We call this spurious correlation

A lack of correlation does not imply lack of a causal effect




- Example: mandatory face masks in public transport in NL from June 2020
o No apparent change in COVID-19 cases, even an increase in the autumn of
2020
- Concluding question: Do face masks have an effect on less COVID cases?
o No: we do not know what would have happened had there been no rule to
wear masks
o There is no clear counterfactual




3

, Applied Micro-econometric Techniques
Vaccinations:

- No clear correlation between vaccine rates and infection numbers (fluctuates
positively and negatively)
- Can we conclude vaccinations have no effect?
o No: We do not know what would have happened if there had been no
vaccinations
o Further studies show vaccinations are effective. It’s just that other things
happen simultaneously.

Threats to the identification of causal effects

Reverse Causality

- Example: Middle Ages
- Europeans believed lice to improve health
- Reasoning: They observed that sick people do not have lice, whereas healthy
people do
o No lice  sick
- However, causality is reversed
- Lice are sensitive to body temperature and leave sick hosts
o No lice  fever

Selection bias and Omitted variables

- Example: health status of people who have (not) been hospitalized) in the past
12 months




- Do hospitals make people sick? E.g. due to germs etc? Not necessarily
- Alternative explanations
o Selection bias
o Omitted variable bias
- Example: a study comparing hospital visits and health status might miss that
sicker people are more likely to visit hospitals (selection bias)

Summary of Causal relationships




4
$11.46
Vollständigen Zugriff auf das Dokument erhalten:

100% Zufriedenheitsgarantie
Sofort verfügbar nach Zahlung
Sowohl online als auch als PDF
Du bist an nichts gebunden

Lerne den Verkäufer kennen
Seller avatar
ab3800

Lerne den Verkäufer kennen

Seller avatar
ab3800 Universiteit Utrecht
Folgen Sie müssen sich einloggen, um Studenten oder Kursen zu folgen.
Verkauft
2
Mitglied seit
1 Jahren
Anzahl der Follower
0
Dokumente
5
Zuletzt verkauft
4 Jahren vor

0.0

0 rezensionen

5
0
4
0
3
0
2
0
1
0

Kürzlich von dir angesehen.

Warum sich Studierende für Stuvia entscheiden

on Mitstudent*innen erstellt, durch Bewertungen verifiziert

Geschrieben von Student*innen, die bestanden haben und bewertet von anderen, die diese Studiendokumente verwendet haben.

Nicht zufrieden? Wähle ein anderes Dokument

Kein Problem! Du kannst direkt ein anderes Dokument wählen, das besser zu dem passt, was du suchst.

Bezahle wie du möchtest, fange sofort an zu lernen

Kein Abonnement, keine Verpflichtungen. Bezahle wie gewohnt per Kreditkarte oder Sofort und lade dein PDF-Dokument sofort herunter.

Student with book image

“Gekauft, heruntergeladen und bestanden. So einfach kann es sein.”

Alisha Student

Häufig gestellte Fragen