Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Examen

Thomas Calculus Early Transcendentals 14th Edition Hass SOLUTIONS MANUAL

Note
-
Vendu
-
Pages
40
Grade
A+
Publié le
20-04-2025
Écrit en
2024/2025

Thomas Calculus Early Transcendentals 14th Edition Hass SOLUTIONS MANUAL

Établissement
Thomas Calculus Early Transcendentals 14th Edition
Cours
Thomas Calculus Early Transcendentals 14th Edition













Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Établissement
Thomas Calculus Early Transcendentals 14th Edition
Cours
Thomas Calculus Early Transcendentals 14th Edition

Infos sur le Document

Publié le
20 avril 2025
Nombre de pages
40
Écrit en
2024/2025
Type
Examen
Contient
Questions et réponses

Sujets

  • 9781292253114

Aperçu du contenu

lOMoARcPSD|51556245




Solutions Thomas Calculus 14th Edition [konkur


Information Security (Harper Adams University)




Scan to open on Studocu




Studocu is not sponsored or endorsed by any college or university
Downloaded by Lamsmmwaura Muiruri ()

, lOMoARcPSD|51556245




www.konkur.in




Thomas Calculus Early Transcendentals 14th Edition Hass SOLUTIONS
MANUAL




CHAPTER 2 LIMITS AND CONTINUITY

2.1 RATES OF CHANGE AND TANGENTS TO CURVES
f f (3)f (2) f f (1)f (1)
1. (a) x  32
 289  19
1
(b) x  1(1)  20 2
1


g g (3) g (1) g g (4) g ( 2)
2. (a) x
 3 1
 3 (21)  2 (b) x
 4  ( 2)  8 68  0


3. (a) h 
h 34 h4   11   4  h 2h 6  0 3   3 3
(b) h
t  3  4   t      
4 2 2 6 3


g g ()  g (0) (21)(21) g g ()  g () (21)(21)
4. (a) t   0

 0
  2

(b) t   ( )  2
0


5. R  20  81
R(2) R(0)

1 31
1
2 2


6. P  21 
P (2) P (1) (81610)(145)
1
 22  0

2 2
y
 ((2h ) 5)(2 5) 44h h 2 51 2
7. (a) x h
 h
 4h h  4  h. As h  0, 4  h  4  at P(2, 1) the slope is 4.
h
(b) y  (1)  4( x  2)  y  1  4 x  8  y  4 x  9
2 2
y
 (7(2h )h )(72 )  744hh h 3  4hh
2 2
8. (a) x h
 4  h. As h  0, 4  h  4  at P(2, 3) the slope
is 4.
(b) y  3  (4)( x  2)  y  3  4 x  8  y  4 x  11

y ((2h)2 2(2h)3)(22 2(2)3) 44h h 2 42h3(3) 2
9. (a) x  h

h
 2hh  2  h. As h  0, 2  h  2  at
h
P(2,  3) the slope is 2.
(b) y  (3)  2( x  2)  y  3  2 x  4  y  2x  7.

y ((1h) 4(1h))(1 4(1)) 12h h 44h(3)
2 2 2
10. (a) x   h 2h  h  2. As h  0, h  2  2  at P(1,  3) the
2
 h
h h
slope is 2.
(b) y  (3)  (2)( x  1)  y  3  2 x  2  y  2x 1.
Downloaded by Lamsmmwaura Muiruri ()
forum.konkur.in

, lOMoARcPSD|51556245




www.konkur.in




y (2h)3 23  h 8  12h 4h h  12  4h  h 2 . As h  0, 12  4h  h 2  12,  at P(2, 8)
2 3 2 3
11. (a) x  h
 812h 4h
h h
the slope is 12.
(b) y  8  12( x  2)  y  8  12 x  24  y  12x 16.

y 2(1 h)3 (213 )
 213h3h h 1  3h3h h  3  3h  h 2 . As h  0, 3 3h  h 2  3,  at
2 3 2 3
12. (a) x  h h h
P(1, 1) the slope is 3.
(b) y  1  (3)( x  1)  y  1  3x  3  y  3x  4.




Copyright  2018 Pearson Education, Inc.
61




Downloaded by Lamsmmwaura Muiruri ()
forum.konkur.in

, lOMoARcPSD|51556245




www.konkur.in


62 Chapter 2 Limits and Continuity
62
y (1h) 12(1h)(1 12(1)) 13h3h h 1212h(11)
3 3 2 3
13. (a) x   9h3h h  9  3h  h 2 .
2 3

h h h
As h  0, 9  3h  h 2  9  at P(1,  11) the slope is 9.
(b) y  (11)  (9)( x  1)  y  11  9 x  9  y  9x  2.

y (2h) 3(2h) 4(2 3(2) 4)
3 2 3 2
 812h 6h h 1212h 3h 40  3h  h  3h  h2 .
2 3 2 2 3
14. (a) x  h h h
As h  0, 3h  h 2  0  at P(2, 0) the slope is 0.
(b) y  0  0( x  2)  y  0.

y
1 2
1
2(2h)
15. (a) x
 2hh  2(2h)  h1  2(2h)
1 .

As h  0, 2(2
1  41 ,  at P 2, 1  
the slope is 1 .
 h) 2 4

(b) y   1   1 ( x  (2))  y  1  1 x  1  y  1 x  1
2 4 2 4 2 4

(4h )
24
 
4
y 4 h  2  1  4h2(2h)  1   1  1 .
  2h
2(4h )
16. (a) x 1 h  h 2h 2h
h 2  h
As h  0, 21 h  12 ,  at P(4,  2) the slope is 12 .
(b) y  (2)  12 ( x  4)  y  2  12 x  2  y  12 x  4

y
 4hh  4  4hh 2  4h  2 
(4 h)4
17. (a)  1 .
x 4h  2 h( 4h 2) 4h 2

As h  0, 1  1  1,  at P(4, 2) the slope is 14 .
4h 2 4 2 4
(b) y  2  14 ( x  4)  y  2  14 x  1  y  14 x  1

y 7(2h)  7(2) 3 3  9h 3  (9h)9  1
18. (a) x
  9h  9h .
h h h 9h 3 h( 9h 3) 9h 3

As h  0,  1   1  1 ,  at P(2, 3) the slope is 1 .
9h 3 9 3 6 6

(b) y  3  1 ( x  (2))  y  3  1 x  1  y  1 x  8
6 6 3 6 3

p
19. (a) Q Slope of PQ 
 t
Q1 (10, 225) 650225
2010
 42.5 m/sec
Q2 (14, 375) 650375
2014  45.83 m/sec
Q3 (16.5, 475) 650475
 50.00 m/sec
2016.5
Q4 (18, 550) 650550
2018
 50.00 m/sec
(b) At t  20, the sportscar was traveling approximately 50 m/sec or 180 km/h.

p
20. (a) Q Slope of PQ t
Q1 (5, 20) 8020  12 m/sec
105

107  13.7 m/sec
Q2 (7, 39) 8039

Q3 (8.5, 58) 8058
 14.7 m/sec
108.5
Q4 (9.5, 72) 8072
109.5
 16 m/sec
(b) Approximately 16 m/sec




Copyright  2018 Pearson Education, Inc.


Downloaded by Lamsmmwaura Muiruri ()
forum.konkur.in

, lOMoARcPSD|51556245




www.konkur.in


Section 2.1 Rates of Change and Tangents to Curves 63

21. (a)
p

200


Profit (1000s)
160

120

80

40
0 t
2010 2011 2012 2013 2014
Ye ar
p 17462
(b) t
 20142012  112
2
 56 thousand dollars per year

(c) The average rate of change from 2011 to 2012 is p
t
 20122011
6227  35 thousand dollars per year.

p
The average rate of change from 2012 to 2013 is t  20132012
11162  49 thousand dollars per year.

So, the rate at which profits were changing in 2012 is approximately 12 (35  49)  42 thousand dollars
per year.
22. (a) F ( x)  ( x  2)/( x  2)
x 1.2 1.1 1.01 1.001 1.0001 1
F ( x) 4.0 3.4 3.04 3.004 3.0004 3
F  4.0(3) F  3.4 (3)
x
 5.0; 1.21
 4.4; x 1.11
F  3.04(3)  4.04; F  3.004(3)  4.004;
x 1.011 x 1.0011
F
x
 3.0004(3)  4.0004;
1.00011
(b) The rate of change of F ( x ) at x  1 is 4.
g g (2) g (1) g g (1.5) g (1) 1
23. (a) x  21
 21
21
 0.414213 x
 1.51
 1.5
0.5
 0.449489
g g (1h) g (1) 1

x  (1h)1
 1hh

(b) g ( x)  x
1 h 1.1 1.01 1.001 1.0001 1.00001 1.000001
1 h 1.04880 1.004987 1.0004998 1.0000499 1.000005 1.0000005
 1 h  1 /h  0.4880 0.4987 0.4998 0.499 0.5 0.5
(c) The rate of change of g ( x ) at x  1 is 0.5.
1 1
(d) The calculator gives lim 1h
h
 2.
h0

11 1
f (3)f (2)
24. (a) i)  3 1 2  16   61
32
1 1 2  T
f(T)f (2)
ii)  TT 22  2TT 2
T 2
2T
 2T2T  2T   2T
(T 2) 2T (2T )
1 ,T  2

(b) T 2.1 2.01 2.001 2.0001 2.00001 2.000001
f (T ) 0.476190 0.497512 0.499750 0.4999750 0.499997 0.499999
( f (T )  f (2))/(T  2) 0.2381 0.2488 0.2500 0.2500 0.2500 0.2500
(c) The table indicates the rate of change is 0.25 at t  2.
(d) lim 1   1
T 2 2T 4  
NOTE: Answers will vary in Exercises 25 and 26.
25. (a) [0, 1]: s  150  15 mph; [1, 2.5]: s  2015  10 mph; [2.5, 3.5]: s  3020  10 mph
t 10 t 2.51 3 t 3.52.5




Copyright  2018 Pearson Education, Inc.


Downloaded by Lamsmmwaura Muiruri ()
forum.konkur.in

, lOMoARcPSD|51556245




www.konkur.in


64 Chapter 2 Limits and Continuity Section 2.2 Limit of a Function and Limit Laws 64
64 64


2 
(b) At P 1 , 7.5 : Since the portion of the graph from t  0 to t  1 is nearly linear, the instantaneous rate of
change will be almost the same as the average rate of change, thus the instantaneous speed at t  12 is
157.5  15 mi/hr. At P(2, 20): Since the portion of the graph from t  2 to t  2.5 is nearly linear, the
10.5
instantaneous rate of change will be nearly the same as the average rate of change, thus v  2020
2.52  0 mi/hr.
For values of t less than 2, we have
s
Slope of PQ  t
 Q
Q1 (1, 15) 1520  5 mi/hr
12
Q2 (1.5, 19) 1920
1.52
 2 mi/hr
19.920
Q3 (1.9, 19.9)
1.92
 1 mi/hr
Thus, it appears that the instantaneous speed at t  2 is 0 mi/hr.
At P(3, 22):
s
Slope of PQ  t Q Slope of PQ  s
 Q t
Q1 (2, 20) 2022 
Q1 (4, 35) 3522
43
 13 mi/hr 23
2 mi/hr
Q2 (3.5, 30) 3022
 16 mi/hr Q2 (2.5, 20) 2022
2.53
 4 mi/hr
3.53
21.622
Q3 (3.1, 23) 2322  10 mi/hr Q3 (2.9, 21.6)  4 mi/hr
3.13 2.93
Thus, it appears that the instantaneous speed at t  3 is about 7 mi/hr.
(c) It appears that the curve is increasing the fastest at t  3.5. Thus for P (3.5, 30)
s
Slope of PQ  t
 Q Q Slope of PQ  s
t
Q1 (4, 35) 3530  10 mi/hr 2230  16 mi/hr
43.5 Q1 (3, 22)
33.5
Q2 (3.75, 34) 3430
3.753.5
 16 mi/hr Q2 (3.25, 25) 2530
 20 mi/hr
3.253.5
Q3 (3.6, 32) 3230
3.63.5
 20 mi/hr Q3 (3.4, 28) 2830
 20 mi/hr
3.43.5
Thus, it appears that the instantaneous speed at t  3.5 is about 20 mi/hr.
26. (a) [0, 3]: tA  1015  1.67 day ; [0, 5]: tA  3.915  2.2 day; [7, 10]: t
gal gal
A  01.4  0.5 gal
30 50 107 day
(b) At P(1, 14) :
A
 Q Slope of PQ  t Q Slope of PQ  tA
Q1 (2, 12.2) 12.214  1.8 gal/day Q1 (0, 15) 1514  1 gal/day
21 01
Q2 (1.5, 13.2) 13.214 14.614
1.51
 1.6 gal/day Q2 (0.5, 14.6)  1.2 gal/day
0.51
Q3 (1.1, 13.85) 13.8514  1.5 gal/day
1.11
Q3 (0.9, 14.86) 14.8614  1.4 gal/day
0.91
Thus, it appears that the instantaneous rate of consumption at t  1 is about 1.45 gal/day.
At P(4, 6):
Q Slope of PQ  tA
Q Slope of PQ  tA

Q (5, 3.9)
1
3.96  2.1 gal/day Q1 (3, 10) 106
 4 gal/day34
54
Q2 (4.5, 4.8) 4.86
 2.4 gal/day Q2 (3.5, 7.8) 7.86
3.54
 3.6 gal/day
4.54
Q3 (4.1, 5.7) 5.76
 3 gal/day Q3 (3.9, 6.3) 6.36
3.94
 3 gal/day
4.14
Thus, it appears that the instantaneous rate of consumption at t  1 is 3 gal/day.

(solution continues on next page)



Copyright  2018 Pearson Education, Inc.


Downloaded by Lamsmmwaura Muiruri ()
forum.konkur.in
$24.19
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
TOPSCORESACADEMIA UNIVESITY OF TENNESSEE
Voir profil
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
16
Membre depuis
11 mois
Nombre de followers
2
Documents
666
Dernière vente
1 mois de cela
Top scorers A+ materials

Looking for relevant and up-to-date study materials to help you ace your exams? We got you covered! We offer a wide range of study resources, including test banks, exams, study notes, and more, to help prepare for your exams and achieve your academic goals FEEL 100% SECURE WHEN YOU SHOP WITH US BECAUSE OFFERING QUALITY PRODUCTS IS OUR CORE INTEREST. REMEBER TO LEAVE A POSITIVE REVIEW WHEN YOU HAVE TIME. TOP SCORERS A+ MATERIALS YOUR TOP NUMBER ONE QUALITY STORE.WHERE A+ GRADES ARE POSSIBLE FOR EVERYONE. WELCOME ALL!! WELCOME ALL!!............THANK YOU FOR YOUR PURCHASE AND WELCOME BACK AGAIN

Lire la suite Lire moins
4.0

4 revues

5
1
4
2
3
1
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions