100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

SOUTHERN NEW HAMPSHIRE UNIVERSITY - 7-3 CALCULUS I: SINGLE-VARIABLE CALCULUS (MAT225) PROJECT TWO - GAME TESTING ROUND TWO 2025

Beoordeling
-
Verkocht
-
Pagina's
28
Cijfer
A+
Geüpload op
10-04-2025
Geschreven in
2024/2025

Question1: Score 1/1 Crossing the Room You receive a response from your home planet with details on how to escape the planet. You are directed to connect your computer to the alien computer as a means to gather information. You are told that there is a spacecraft that can get you home, but it is guarded by several gates and traps. Your computer has informed you that the raw ingredients for fuel are available, but the amount of fuel in the ship is unknown. The first step is to travel across a room that includes hidden traps in the floor. There are safe places where you must stop in order to make it across the room safely. The location of these safe spaces will be translated into mathematics, which you can solve, and then program into your computer. Your computer will then detail precisely where you can stop in the room. Your computer translates the following: Find the open intervals on which the function f (x) = x + 4√1 − x is increasing or decreasing. The safe points will be calculated from these intervals. If the function is never increasing or decreasing, provide an input of NA to your computer. Increasing Interval: Your response (-infinity, -3) Auto graded Grade: 1/1.0 Decreasing Interval: Your response (-3, 1) Auto graded Grade: 1/1

Meer zien Lees minder
Instelling
SOUTHERN NEW HAMPSHIRE UNIVERSITY - 7-3 CALCULUS I
Vak
SOUTHERN NEW HAMPSHIRE UNIVERSITY - 7-3 CALCULUS I










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
SOUTHERN NEW HAMPSHIRE UNIVERSITY - 7-3 CALCULUS I
Vak
SOUTHERN NEW HAMPSHIRE UNIVERSITY - 7-3 CALCULUS I

Documentinformatie

Geüpload op
10 april 2025
Bestand laatst geupdate op
10 april 2025
Aantal pagina's
28
Geschreven in
2024/2025
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

SOUTHERN NEW HAMPSHIRE UNIVERSITY - 7-3 CALCULUS I:
SINGLE-VARIABLE CALCULUS (MAT225) PROJECT TWO - GAME
TESTING ROUND TWO 2025

, [PRINT]



Question1: Score 1/1


Crossing the Room
You receive a response from your home planet with details on
how to escape the planet. You are directed to connect your
computer to the alien computer as a means to gather
information. You are told that there is a spacecraft that can get
you home, but it is guarded by several gates and traps. Your
computer has informed you that the raw ingredients for fuel are
available, but the amount of fuel in the ship is unknown. The
first step is to travel across a room that includes hidden traps in
the floor. There are safe places where you must stop in order to
make it across the room safely. The location of these safe
spaces will be translated into mathematics, which you can
solve, and then program into your computer. Your computer will
then detail precisely where you can stop in the room. Your
computer translates the following:


Find the open intervals on which the function
f (x) = x + 4√1 − x is increasing or decreasing. The safe
points will be calculated from these intervals. If the function is
never increasing or decreasing, provide an input of NA to your
computer.



Increasing
Interval:

Your response Correct response
(-infinity, -3) (−∞, −3)
Auto graded Grade: 1/1.0


Decreasing
Interval:
Your response Correct response
(-3, 1) (−3, 1)
Auto graded Grade: 1/1.0

, Explain, in your own words and with your own work, how
you arrived at this result. Be sure to explain using calculus
concepts to best support the work of the game design
team.

To find the intervals where f (x) = x + 4√1 − x is increasing and decreasing, we first
should find the domain of our function.
The section under the square root cannot be negative.
Therefore, 1 − x ≥0 → 1≥x
So our domain of f (x) is (−∞, 1]

Now to find the derivative with respect to x
4(−1)
f ′ (x) = 1 +
2√1−x
f ′ (x) = 1 − 2
√1−x
With our derivative, we use the equation to solve for f'(x) > 0 for increasing interval
and then take its intersection with the domain.
1− 2 > 0 → x < −3
√1−x
We need to take the intersection with the domain for increasing intervals.
We get, x ∈ (−∞, −3) ∩ (−∞, 1)
Therefore, our increasing interval is (−∞, −3)

Now we will do the same for our decreasing interval, except f'(x) < 0 now
1− 2 < 0 → x > −3
√1−x
We need to take the intersection with the domain for decreasing intervals.
We get, x ∈ (−3, ∞) ∩ (−∞, 1)
Therefore, our decreasing interval is (−3, 1)
Ungraded Grade: 0/0.0




Total grade: 1.0×1/2 + 1.0×1/2 + 0.0×0/2 = 50% + 50% + 0%




Question2: Score 1/1

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
ExamVerse Southern New Hampshire University
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
527
Lid sinds
3 jaar
Aantal volgers
440
Documenten
6268
Laatst verkocht
1 week geleden

3.7

103 beoordelingen

5
48
4
17
3
13
2
9
1
16

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen