100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary - Statistics Ia (PSBE1-08) Psychology

Beoordeling
-
Verkocht
-
Pagina's
24
Geüpload op
24-03-2025
Geschreven in
2022/2023

The summary is very detailed and includes information from both books, the lectures, and extra explanations where necessary to make sure all concepts are thoroughly understood.

Instelling
Vak










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
24 maart 2025
Aantal pagina's
24
Geschreven in
2022/2023
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

if you feel like it → paypal / buymeacoffee

, if you feel like it → paypal / buymeacoffee


Chapter 1 - Looking at Data - Distributions
1.1 Data
statistics → how we model uncertainty
→ summarizes quantitative data
→ helps make claims in the face of uncertainty
↳ since we can’t sample the whole population

General Terms
data → numerical or qualitative descriptions of an object
cases → the objects described by a set of data
​ ​ ↳ex: customers, subjects in a study, units in an experiment
label → a special variable used to differentiate the different cases
variable → a characteristic of a case
​ ↳ different cases can have different values (levels) of the variables
categorical variable → places a case in one of several groups/categories
quantitative variable → takes numerical values (for which arithmetic operations make sense)
​ ↳ needs a unit of measurement

Key Characteristics of a Data Set
What and how many cases does the data describe? (WHO?)
How many variables do the data have, and what are their exact definitions? (WHAT?)
What purpose does the data have? Can we draw conclusions for other cases? Are the
variables suitable? (WHY?)

Operationalization
important questions about operationalization:
→ does the operationalization capture what I want to study?
→ how is my operationalization related to other researchers’ operationalizations?
→ is there a standard way to operationalize my variable?
→ is my operationalization easily measurable?

Measurement Scales
- choose the highest possible and meaningful (concerning content) scale
nominal scale → assigns observations to unordered categories
↳ ex: favorite color
​ ​ - identities/labels (ex: gender, ID, …)
ordinal scale → assigns observations to ordered categories
↳ ex: satisfaction scale: (0) not satisfied at all → (9) very satisfied
- categorical: ex: how good are you in sports: good, satisfactory, poor
interval/ratio scale → assigns scores on a scale with quantitative information
​ ↳ ex: how many siblings do you have? 1,2,3,4,5,6,7,8,9,………
​ ​ - outcomes of calculations are sensible (ex: mean score = 5.2)
↳ has a true zero point

, if you feel like it → paypal / buymeacoffee




nominal ordinal interval ratio

categorizes and labels variables ✔ ✔ ✔ ✔

ranks categories in order ✔ ✔ ✔

has known, equal intervals ✔ ✔

has a true or meaningful zero ✔

Discrete vs. Continuous Measures
discrete data → “between” numbers are meaningless (without decimals)
↳ ex: how many siblings do you have: “2” and “3” are possible answers, but “2.5” is not
continuous data → “between” numbers have meaning (can have decimals)
↳ ex: how tall are you: all positive real numbers are meaningful answers
- nominal and ordinal scales tend to be discrete

1.2 Displaying distributions with graphs
exploratory data analysis → examining data to describe their main features
↳ by summarizing the data graphically
↳ or by summarizing characteristics of data with numbers
distribution of a variable → what values does the variable take and how often does it take them
- the choice for certain plots/graphs depends on the measurement scale/level of the variable:

nominal and ordinal scales interval and ratio scales




bar graph pie chart stemplot histogram


Distribution of Categorical Variables
- pie charts or bar graphs give counts or percents/proportion of cases that fall in each
category

Distribution of Quantitative Variables
stemplots (stem-and-leaf-plots)
- give a picture of a distribution while including the actual numerical values (best for small
numbers of observations, all above 0)
→ stem: consisting of all but the final digit of a value, written in a vertical column
→ leaf: final digit, in rows to the right of the stem (increasing order)
→ back to back stemplot: different datasets are written on both sides of the stem
$8.99
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
mikemarcu

Ook beschikbaar in voordeelbundel

Maak kennis met de verkoper

Seller avatar
mikemarcu Rijksuniversiteit Groningen
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
6
Lid sinds
2 jaar
Aantal volgers
2
Documenten
6
Laatst verkocht
1 maand geleden

0.0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen