Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Examen

Solutions Manual for Computational Fluid Dynamics for Mechanical Engineering, 1st Edition By George Qin All Chapters (1-14)

Note
-
Vendu
-
Pages
111
Grade
A+
Publié le
21-03-2025
Écrit en
2024/2025

Solutions Manual for Computational Fluid Dynamics for Mechanical Engineering, 1st Edition By George Qin All Chapters (1-14)

Établissement
Cours











Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

Livre connecté

École, étude et sujet

Cours

Infos sur le Document

Publié le
21 mars 2025
Nombre de pages
111
Écrit en
2024/2025
Type
Examen
Contient
Questions et réponses

Sujets

Aperçu du contenu

Solutions Manual for Computational Fluid
Dynamics for Mechanical Engineering, 1e by
George Qin (All Chapters)


Chapter 1
1. Show that Equation (1.14) can also be written as
𝜕𝑢 𝜕𝑢 𝜕𝑢 𝜕2𝑢 𝜕2𝑢 1 𝜕𝑝
+𝑢 +𝑣 = 𝜈 ( 2 + 2) −
𝜕𝑡 𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑦 𝜌 𝜕𝑥
Solution
Equation (1.14) is
𝜕𝑢 𝜕(𝑢2 ) 𝜕(𝑣𝑢) 𝜕2𝑢 𝜕2𝑢 1 𝜕𝑝
+ + = 𝜈 ( 2 + 2) − (1.13)
𝜕𝑡 𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑦 𝜌 𝜕𝑥
The left side is
𝜕𝑢 𝜕(𝑢2 ) 𝜕(𝑣𝑢) 𝜕𝑢 𝜕𝑢 𝜕𝑢 𝜕𝑣
+ + = + 2𝑢 +𝑣 +𝑢
𝜕𝑡 𝜕𝑥 𝜕𝑦 𝜕𝑡 𝜕𝑥 𝜕𝑦 𝜕𝑦
𝜕𝑢 𝜕𝑢 𝜕𝑢 𝜕𝑢 𝜕𝑣 𝜕𝑢 𝜕𝑢 𝜕𝑢
= +𝑢 +𝑣 +𝑢( + ) = +𝑢 +𝑣
𝜕𝑡 𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑦 𝜕𝑡 𝜕𝑥 𝜕𝑦
since
𝜕𝑢 𝜕𝑣
+ =0
𝜕𝑥 𝜕𝑦
due to the continuity equation.
2. Derive Equation (1.17).
Solution:
From Equation (1.14)
𝜕𝑢 𝜕(𝑢2 ) 𝜕(𝑣𝑢) 𝜕2𝑢 𝜕2𝑢 1 𝜕𝑝
+ + = 𝜈 ( 2 + 2) −
𝜕𝑡 𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑦 𝜌 𝜕𝑥
Define
𝑢 𝑣 𝑥𝑖 𝑡𝑈 𝑝
𝑢̃ = , 𝑣̃ = , 𝑥̃𝑖 = , 𝑡̃ = , 𝑝̃ =
𝑈 𝑈 𝐿 𝐿 𝜌𝑈 2
Equation (1.14) becomes
𝑈𝜕𝑢̃ 𝑈 2 𝜕(𝑢̃2 ) 𝑈 2 𝜕(𝑣̃𝑢 ̃) 𝜈𝑈 𝜕 2 𝑢̃ 𝜕 2 𝑢̃ 𝜌𝑈 2 𝜕𝑝̃
+ + = 2 ( 2 + 2) −
𝐿 ̃ 𝐿𝜕𝑥̃ 𝐿𝜕𝑦̃ 𝐿 𝜕𝑥̃ 𝜕𝑦̃ 𝜌𝐿 𝜕𝑥̃
𝑈 𝜕𝑡
Dividing both sides by 𝑈 2 /𝐿, Equation (1.17) follows.

3. Derive a pressure Poisson equation from Equations (1.13) through (1.15):




Downloaded by: tutorsection | Want to earn $1.236
Distribution of this document is illegal extra per year?

, 𝜕2𝑝 𝜕2𝑝 𝜕𝑢 𝜕𝑣 𝜕𝑣 𝜕𝑢
+ = 2𝜌 ( − )
𝜕𝑥 2 𝜕𝑦 2 𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑦
Solution:
𝜕𝑢 𝜕𝑣
+ =0 (1.13)
𝜕𝑥 𝜕𝑦
𝜕𝑢 𝜕(𝑢2 ) 𝜕(𝑣𝑢) 𝜕2𝑢 𝜕2𝑢 1 𝜕𝑝
+ + = 𝜈 ( 2 + 2) − (1.14)
𝜕𝑡 𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑦 𝜌 𝜕𝑥
𝜕𝑣 𝜕(𝑢𝑣) 𝜕(𝑣 2 ) 𝜕2𝑣 𝜕2𝑣 1 𝜕𝑝
+ + = 𝜈 ( 2 + 2) − (1.15)
𝜕𝑡 𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑦 𝜌 𝜕𝑦
Taking 𝑥-derivative of each term of Equation (1.14) and 𝑦-derivative of each term of Equation (1.15),
then adding them up, we have
𝜕 𝜕𝑢 𝜕𝑣 𝜕 2 (𝑢2 ) 𝜕 2 (𝑣𝑢) 𝜕 2 (𝑣 2 )
( + )+ + 2 +
𝜕𝑡 𝜕𝑥 𝜕𝑦 𝜕𝑥 2 𝜕𝑥𝜕𝑦 𝜕𝑦 2
2 2
𝜕 𝜕 𝜕𝑢 𝜕𝑣 1 𝜕2𝑝 𝜕2𝑝
= 𝜈 ( 2 + 2) ( + ) − ( 2 + 2)
𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑦 𝜌 𝜕𝑥 𝜕𝑦
Due to continuity, we have
𝜕2𝑝 𝜕2𝑝 𝜕 2 (𝑢2 ) 𝜕 2 (𝑣𝑢) 𝜕 2 (𝑣 2 )
+ = −𝜌 [ + 2 + ]
𝜕𝑥 2 𝜕𝑦 2 𝜕𝑥 2 𝜕𝑥𝜕𝑦 𝜕𝑦 2
= −2𝜌(𝑢𝑥 𝑢𝑥 + 𝑢𝑢𝑥𝑥 + 𝑢𝑥 𝑣𝑦 + 𝑢𝑣𝑥𝑦 + 𝑢𝑥𝑦 𝑣 + 𝑢𝑦 𝑣𝑥 + 𝑣𝑦 𝑣𝑦 + 𝑣𝑣𝑦𝑦 )
𝜕 𝜕 𝜕𝑢 𝜕𝑣
= −2𝜌 [(𝑢𝑥 + 𝑢 + 𝑣 ) ( + ) + 𝑢𝑦 𝑣𝑥 + 𝑣𝑦 𝑣𝑦 ]
𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑦
𝜕𝑢 𝜕𝑣 𝜕𝑣 𝜕𝑢
= −2𝜌(𝑢𝑦 𝑣𝑥 + 𝑣𝑦 𝑣𝑦 ) = −2𝜌(𝑢𝑦 𝑣𝑥 − 𝑢𝑥 𝑣𝑦 ) = 2𝜌 ( − )
𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑦
4. For a 2-D incompressible flow we can define the stream function 𝜙 by requiring
𝜕𝜙 𝜕𝜙
𝑢= ; 𝑣=−
𝜕𝑦 𝜕𝑥
We also can define a flow variable called vorticity
𝜕𝑣 𝜕𝑢
𝜔= −
𝜕𝑥 𝜕𝑦
Show that
𝜕2𝜙 𝜕2𝜙
𝜔 = − ( 2 + 2)
𝜕𝑥 𝜕𝑦
Solution:
𝜕𝑣 𝜕𝑢 𝜕 𝜕𝜙 𝜕 𝜕𝜙 𝜕2𝜙 𝜕2𝜙
𝜔= − = (− ) − ( ) = − ( 2 + 2)
𝜕𝑥 𝜕𝑦 𝜕𝑥 𝜕𝑥 𝜕𝑦 𝜕𝑦 𝜕𝑥 𝜕𝑦




Downloaded by: tutorsection | Want to earn $1.236
Distribution of this document is illegal extra per year?

, Chapter 2
𝑑𝜙
1. Develop a second-order accurate finite difference approximation for ( 𝑑𝑥 ) on a non-uniform
𝑖
mesh using information (𝜙 and 𝑥 values) from mesh points 𝑥𝑖−1 , 𝑥𝑖 and 𝑥𝑖+1. Suppose 𝛿𝑥𝑖 =
𝑥𝑖+1 − 𝑥𝑖 = 𝛼𝛿𝑥𝑖−1 = 𝛼(𝑥𝑖 − 𝑥𝑖−1 ).

Solution:

Assume close to the 𝑖 𝑡ℎ point, 𝜙(𝑥) = 𝜙𝑖 + 𝑏(𝑥 − 𝑥𝑖 ) + 𝑐(𝑥 − 𝑥𝑖 )2 + 𝑑(𝑥 − 𝑥𝑖 )3 …
𝑑𝜙 𝑑𝜙
Then 𝑑𝑥 = 𝑏 + 2𝑐(𝑥 − 𝑥𝑖 ) + ⋯ and ( 𝑑𝑥 ) = 𝑏.
𝑖

Now 𝜙𝑖+1 = 𝜙(𝑥𝑖+1 ) = 𝜙𝑖 + 𝑏(𝑥𝑖+1 − 𝑥𝑖 ) + 𝑐(𝑥𝑖+1 − 𝑥𝑖 )2 + ⋯ = 𝜙𝑖 + 𝑏Δ𝑥𝑖 + 𝑐Δ𝑥𝑖2 + 𝑑Δ𝑥𝑖3 …
2 3
And 𝜙𝑖−1 = 𝜙(𝑥𝑖−1 ) = 𝜙𝑖 + 𝑏(𝑥𝑖−1 − 𝑥𝑖 ) + 𝑐(𝑥𝑖−1 − 𝑥𝑖 )2 + ⋯ = 𝜙𝑖 − 𝑏Δ𝑥𝑖−1 + 𝑐Δ𝑥𝑖−1 − 𝑑Δ𝑥𝑖−1 …
2
So Δ𝑥𝑖−1 𝜙𝑖+1 − Δ𝑥𝑖2 𝜙𝑖−1 = (Δ𝑥𝑖−1
2
− Δ𝑥𝑖2 )𝜙𝑖 + 𝑏Δ𝑥𝑖 Δ𝑥𝑖−1 (Δ𝑥𝑖 + Δ𝑥𝑖−1 ) + 𝑑Δ𝑥𝑖2 Δ𝑥𝑖−1
2
(Δ𝑥𝑖 +
Δ𝑥𝑖−1 ) + ⋯
2
Δ𝑥𝑖−1 𝜙𝑖+1 −Δ𝑥𝑖2 𝜙𝑖−1 −(Δ𝑥𝑖−1
2
−Δ𝑥𝑖2 )𝜙𝑖
And 𝑏 = Δ𝑥𝑖 Δ𝑥𝑖−1 (Δ𝑥𝑖 +Δ𝑥𝑖−1 )
− 𝑑Δ𝑥𝑖 Δ𝑥𝑖−1 + ⋯

𝑑𝜙
A 2nd order finite difference for ( 𝑑𝑥 ) is therefore
𝑖
2
𝑑𝜙 Δ𝑥𝑖−1 𝜙𝑖+1 − Δ𝑥𝑖2 𝜙𝑖−1 − (Δ𝑥𝑖−1
2
− Δ𝑥𝑖2 )𝜙𝑖 𝜙𝑖+1 + (α2 − 1)𝜙𝑖 − α2 𝜙𝑖−1
( ) =𝑏≈ =
𝑑𝑥 𝑖 Δ𝑥𝑖 Δ𝑥𝑖−1 (Δ𝑥𝑖 + Δ𝑥𝑖−1 ) α(α + 1)Δ𝑥𝑖−1

2. Use the scheme you developed for problem 1 to evaluate the derivative of 𝜙(𝑥) =
sin(𝑥 − 𝑥𝑖 + 1) at point 𝑖. Suppose Δ𝑥𝑖−1 = 0.02 and Δ𝑥𝑖 = 0.01. Compare your
numerical result with the exact solution, which is cos(1). Then halve both Δ𝑥𝑖−1 and Δ𝑥𝑖 ,
and redo the calculation. Is the scheme truly second-order accurate?
Solution:
clear; clc;
dxi = 0.01; dxim1 = 0.02; alpha = dxi/dxim1;
for iter = 1 : 2
x = [-dxim1,0,dxi];
phi = sin(x+1);




Downloaded by: tutorsection | Want to earn $1.236
Distribution of this document is illegal extra per year?

, dphidx = (phi(3)+(alpha^2-1)*phi(2)-alpha^2*phi(1))/(alpha*(alpha+1)*dxim1);
err(iter) = dphidx-cos(1);
dxi = dxi/2; dxim1 = dxim1/2;
end
err(1)/err(2)


It is truly 2nd-order accurate.

3. Reproduce the calculation presented in Section 2.1.2 Example: Laminar Channel Flow.
Solution:
%--------------------------------------------------------------%
% FULLY-DEVELOPED CHANNEL FLOW %
% By George Qin for "A Course of Computational Fluid Dynamics" %
%--------------------------------------------------------------%
tic
clear; clc;
% PARAMETERS
H = 1; N = 5;
% FACE LOCATIONS
yf = linspace(0,H,N+1);
% NODE LOCATIONS
y = 0.5*(yf(1:end-1)+yf(2:end));
% DELTA Y
dy = yf(2)-yf(1);
% THE THREE DIAGONAL VECTORS IN THE COEFFICIENT MATRIX
as = -(1/dy^2)*ones(1,N);
ap = (2/dy^2)*ones(1,N);
an = -(1/dy^2)*ones(1,N);
b = ones(1,N);
% SPECIAL VALUES AT THE BOUNDARIES (BOUNDARY CONDITIONS)
%ap(1) = 3/dy^2; as(1) = 0;
%ap(1) = 4/dy^2; an(1) = - (4/3)/dy^2; as(1) = 0;
ap(1) = 3/dy^2; as(1) = 0; b(1) = 3/4;
ap(end) = 1/dy^2; an(end) = 0;
% SOLVE THE SYSTEM OF LINEAR EQUATIONS WITH TDMA ALGORITHM
u = TDMA(as,ap,an,b); % this is in the appendix of the textbook
toc
% COMPARE WITH EXACT SOLUTION
u_exact = y.*(1-0.5*y);
err = (u_exact-u)./u_exact * 100;
% RECALCULATE EXACT SOLUTION VECTOR FOR PLOTTING
y_exact = 0:0.01:1;
u_exact = y_exact.*(1-0.5*y_exact);
plot(y_exact,u_exact,y,u,'ro')
xlabel('$y$','FontSize',20,'Interpreter','Latex')
ylabel('$u$','FontSize',20,'Interpreter','Latex')
h_legend=legend('Exact Solution','Numerical Solution');
set(h_legend,'FontSize',14,'Interpreter','Latex','Location','NorthWest')


4. Show that the method used in Section 2.1.2 Example: Laminar Channel Flow is first-
order accurate by using the global error estimate technique.
Solution:

These finite difference equations and their truncation errors are reproduced here:




Downloaded by: tutorsection | Want to earn $1.236
Distribution of this document is illegal extra per year?
$12.99
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
TestsBanks University of Greenwich (London)
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
869
Membre depuis
4 année
Nombre de followers
181
Documents
2354
Dernière vente
2 jours de cela
Accounting, Finance, Statistics, Computer Science, Nursing, Chemistry, Biology & More — A+ Test Banks, Study Guides & Solutions

Welcome to TestsBanks! Best Educational Resources for Student I offer test banks, study guides, and solution manuals for all subjects — including specialized test banks and solution manuals for business books. My materials have already supported countless students in achieving higher grades, and I want them to be the guide that makes your academic journey easier too. I’m passionate, approachable, and always focused on quality — because I believe every student deserves the chance to excel. THANKS ALOT!!

Lire la suite Lire moins
4.1

132 revues

5
79
4
19
3
13
2
6
1
15

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions