Differential Equations and Boundary Value
TU
Problems: Computing and Modeling, 6th
edition
Author (s): C Henry Edwards, David E. Penney
VI
A
AP
PR
O
VE
D
?
, CHAPTER 1
ST
FIRST-ORDER DIFFERENTIAL EQUATIONS
SECTION 1.1
DIFFERENTIAL EQUATIONS AND MATHEMATICAL MODELS
U
The main purpose of Section 1.1 is simply to introduce the basic notation and terminology of dif-
ferential equations, and to show the student what is meant by a solution of a differential equation.
VI
Also, the use of differential equations in the mathematical modeling of real-world phenomena is
outlined.
Problems 1-12 are routine verifications by direct substitution of the suggested solutions into the
A
given differential equations. We include here just some typical examples of such verifications.
3. If y1 cos 2 x and y2 sin 2 x , then y1 2sin 2 x y2 2 cos 2 x , so
y1 4 cos 2 x 4 y1 and y2 4sin 2 x 4 y2 . Thus y1 4 y1 0 and y2 4 y2 0 .
AP
4. If y1 e3 x and y2 e 3 x , then y1 3 e3 x and y2 3 e 3 x , so y1 9e3 x 9 y1 and
y2 9e 3 x 9 y2 .
5. If y e x e x , then y e x e x , so y y e x e x e x e x 2 e x . Thus
PR
y y 2 e x .
6. If y1 e 2 x and y2 x e 2 x , then y1 2 e 2 x , y1 4 e 2 x , y2 e 2 x 2 x e 2 x , and
y2 4 e 2 x 4 x e 2 x . Hence
y1 4 y1 4 y1 4 e 2 x 4 2 e 2 x 4 e 2 x 0
O
and
y2 4 y2 4 y2 4e 2 x
4 x e 2 x 4 e 2 x 2 x e 2 x 4 x e 2 x 0.
VE
8. If y1 cos x cos 2 x and y2 sin x cos 2 x , then y1 sin x 2sin 2 x,
y1 cos x 4 cos 2 x, y2 cos x 2sin 2 x , and y2 sin x 4 cos 2 x. Hence
y1 y1 cos x 4 cos 2 x cos x cos 2 x 3cos 2 x
D
and
y2 y2 sin x 4 cos 2 x sin x cos 2 x 3cos 2 x.
?
1
Copyright © 2023 Pearson Education, Inc.
, 2 DIFFERENTIAL EQUATIONS AND MATHEMATICAL MODELS
11. If y y1 x 2 , then y 2 x 3 and y 6 x 4 , so
x 2 y 5 x y 4 y x 2 6 x 4 5 x 2 x 3 4 x 2 0.
ST
If y y2 x 2 ln x , then y x 3 2 x 3 ln x and y 5 x 4 6 x 4 ln x , so
x 2 y 5 x y 4 y x 2 5 x 4 6 x 4 ln x 5 x x 3 2 x 3 ln x 4 x 2 ln x
5 x 2 5 x 2 6 x 2 10 x 2 4 x 2 ln x 0.
U
13. Substitution of y erx into 3 y 2 y gives the equation 3r e rx 2 e rx , which simplifies
to 3 r 2. Thus r .
VI
14. Substitution of y erx into 4 y y gives the equation 4r 2 e rx e rx , which simplifies to
4 r 2 1. Thus r .
A
15. Substitution of y erx into y y 2 y 0 gives the equation r 2 e rx r e rx 2 e rx 0 ,
which simplifies to r 2 r 2 (r 2)(r 1) 0. Thus r 2 or r 1 .
AP
16. Substitution of y erx into 3 y 3 y 4 y 0 gives the equation 3r 2 e rx 3r e rx 4 e rx 0
, which simplifies to 3r 2 3r 4 0 . The quadratic formula then gives the solutions
r 3 57 6.
The verifications of the suggested solutions in Problems 17-26 are similar to those in Problems
PR
1-12. We illustrate the determination of the value of C only in some typical cases. However, we
illustrate typical solution curves for each of these problems.
17. C2 18. C 3
O
VE
D
?
Copyright © 2023 Pearson Education, Inc.
, Section 1.1 3
Problem 17 Problem 18
4 5
ST
(0, 3)
(0, 2)
y y
0 0
U
VI
−4 −5
−4 0 4 −5 0 5
x x
A
19. If y x Ce x 1 , then y 0 5 gives C 1 5 , so C 6 .
20. If y x C e x x 1 , then y 0 10 gives C 1 10 , or C 11 .
AP
Problem 19 Problem 20
10 20
5 (0, 5) (0, 10)
PR
y y
0 0
−5
O
−10 −20
−5 0 5 −10 −5 0 5 10
VE
x x
21. C 7.
22. If y ( x) ln x C , then y 0 0 gives ln C 0 , so C 1 .
D
?
Copyright © 2023 Pearson Education, Inc.