100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Samenvatting Statistiek & wiskudige data-analyse UGent industrieel ingenieur

Beoordeling
-
Verkocht
5
Pagina's
7
Geüpload op
14-05-2020
Geschreven in
2019/2020

Samenvatting die handig is voor het (sinds 2020 nieuwe) vak STAWIDA. Industrieel ingenieur, UGent De volgende onderwerpen worden in de samenvatting besproken. *Verdelingsfuncties van een populatie *Discrete verdelingen *Continue verdelingen *Schattingstheorie *Testen van hypothesen *ANOVA *Regressie Ik bied ook andere documenten van STAWIDA aan. Stuur me gerust een privébericht indien je vragen hebt, ik help graag! Ik haalde 16/20 op dit examen.

Meer zien Lees minder
Instelling
Vak










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
14 mei 2020
Bestand laatst geupdate op
5 juni 2020
Aantal pagina's
7
Geschreven in
2019/2020
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Statistiek samenvatting
(Algemeen: Griekse letters zijn voor gegevens van de populatie (σ), gewone letters voor steekproef (s).


Hoofdstuk 3: Verdelingsfuncties van een populatie
Kansfunctie = dichtheidsfunctie:

Bij discreet: f(xi) = P(x=xi) als xi ∈ de waarden van de functie.
Bij continu: Bovendien geldt P(x=c)=0

Cumulatief wordt het cumulatieve distributiefunctie of verdelingsfunctie genoemd.

De verwachte waarde van een functie E[g(x)] : Discreet:
Continu:
Gemiddelde E[x]:



Modus: x-waarde waarvoor f(x) zijn maximum bereikt.
Mediaan: F(mediaan) = 0.5
Variantie ²:




Standaardafwijking : vierkantswortel uit variantie. ² = V[x] = E[x²] - µ² Var(G) = E(G²) – [E(g)]²
Eigenschappen: E[ax+b] = a E[x] + b en V[ax+b]=a²V[x]

Fractielen: eerste deciel X0.10, eerste kwartiel X0.25, derde kwartiel X0.75, tweede kwartiel is de mediaan
Kwartieldeviatie K = 0,5 * (X0.75 – X0.25)

Moment van toevalsveranderlijke x van orde k t.o.v. punt c = E[ ( x – c )k ]
voor c=0: µ’k = E[xk] voor c=µ: µk = E[(x-µ)k] = centrale momenten

Momentenfunctie M(t) = E[etx]
= verwachte waarde voor etx

Scheefheid S = α3 = µ3/σ3 = S>1 is staart naar rechts. S=0 symmetrisch

Steilheid K = kurtosis = α4 = µ4/σ4 = K>3 = steiler, K<3 = platter. Excess E = K – 3

Ongelijkheid van Chebychev:
𝑃(|𝑋 – 𝜇| ≥ 𝑘𝜎) ≤ 1/k² en 𝑃(|𝑋 – 𝜇| < 𝑘𝜎) ≥ 1 - 1/k²

!examen: “bepaal de kans dat x-µ groter is dan…”  als f(x) gegeven is, niet
met Chebychev doen. Alleen schattingen mogen met Chebychev gemaakt
worden.




1

,Hoofdstuk 4: Discrete verdelingen
µ’s en σ’s gegeven op formularium, f(i)’s niet.

Uniforme discrete verdeling:
alle uitkomsten even waarschijnlijk. F(i) = P(x=xi) =

Eigenschappen:


Bernouilli verdeling:
2 mogelijke uitkomsten: p = kans op succes. 1-p is kans op geen succes

f(i) = P(x=i) = pi(1-p)1-i E[x] = µ = p V[x] = σ² = p(1-p)

Binomiale verdeling:
Een experiment (2 mogelijke uitkomsten; Bernouilli-experiment) wordt aantal keren (onafhankelijk)
herhaald. Volgorde is dus willekeurig.

f(i) = P(x=i) = 𝐶 𝑝 (1 − 𝑝) met i= 0,1,…n E[x] = µ = np V[x] = σ² = np(1-p)
( )
Recursierelatie: f(i+1) = 𝑓(𝑖) ( )( )
(kan je ook afleiden)

Momentenfunctie: M(t) = E[eti ] = (1-p+pet)n

Geometrische verdeling:
Een experiment (Bernouilli: 2 mogelijke uitkomsten), wordt (onafhankelijk) herhaald tot verschijnsel A voor
het eerst optreedt.
f(i) = P(x=i) = (1-p)i-1 p E[x] = µ = V[x] = σ² =

Hypergeometrische verdeling:
N elementen waarvan M de eigenschap A bezitten, er worden n elementen getrokken. De kans dat i van die
n elementen eigenschap A bezitten is:

f(i) = (hfst 1) E[x] = µ = V[x] = σ² = 𝑛 (1 − )

Bij een kleine n t.o.v. N zal de kans op succes benaderd worden door p = M/N

Poisson verdeling:
“Een aantal per tijdsinterval/volume/gewicht/…” Het aantal successen in elk interval is onafhankelijk van
aantal successen in elk ander interval én de kans op succes is rechtevenredig aan de grootte van het
interval.
f(i) = P(x=i) = 𝑒 E[x] = µ = λ V[x] = σ² = λ
!

Eigenschap: voor n -> ∞ en p -> 0 nadert de binomiale verdeling naar de Poissonverdeling met λ = np .

Recursieformule: f(i+1) = f(i)




2

, Hoofdstuk 5: Continue verdelingen
Uniform continue verdeling
Dichtheidsfuntie is constant binnen een interval [a,b]. ∫ 𝑘𝑑𝑥 = 1 𝑧𝑜𝑑𝑎𝑡 𝑘 =

𝑓(𝑥) = ∀𝑥 ∈ [𝑎, 𝑏] E[x] = µ = (𝑎 + 𝑏) σ² = E[x²]-µ² = (𝑏 − 𝑎)²

Exponentiële verdeling
𝑓(𝑥) = 𝑒 𝑥 ≥ 0 𝑒𝑛 𝜗 > 0 E[x] = µ = 𝜗 σ² =µ2’-µ² = 𝜗² -> levensduur

Normale verdeling = Gaussdistributie
N(µ, σ)
( µ)²
𝑓(𝑥) = 𝑒 ² 𝑥𝜖ℝ µ=µ u2’ = µ² + σ² σ² =µ2’-µ² = 𝜎²

Dichtheidsfunctie f(x) heeft maximum in x=µ en buigpunten in x = µ - σ en x = µ + σ.
Als y=ax+b normaal verdeeld is met µ en σ, dan is y ook normaal verdeeld met µy=aµ+b en σy = |a| σ.
Bij een steekproef van n willekeurige elementen uit N(µ0, σ0) verdeling, dan is 𝑥̅ verdeeld als N(µ0, ).

µ
Genormeerde normale verdeling: als x N(µ, σ) verdeeld is, is z = genormeerd normaal verdeeld: N(0,1)

 Als x binomiaal verdeeld is met n en p, nadert die naar N(np, 𝒏𝒑(𝟏 − 𝒑)) als np≥5 en n(1-p)≥5.
 Als x poisson verdeeld is met λ, nadert die naar N(𝛌, √𝛌) als λ groot genoeg is (≥ 15)
 Centrale limietstelling: n onafhankelijke toevalsvariabelen met zelfde verdeling  somvariabele Sn is
asymptotisch normaal verdeeld met gemiddelde nµ en variantie nσ². (n≥ 30)
! Overgang van discrete variabele naar continue variabele: continuïteitscorrectie. Bv. P(i≥ 10) = P(x≥ 9,5)

De χ² verdeling
x is som van kwadraten van n genormeerde normaal verdeelde variabelen zi met k verbindingsvgl (v = n - k).
χ²(v d.f.) x steeds positief µ=v σ² = 2v
Voor v ≥30 is z = benaderd N(0,1) verdeeld.


Eigenschap: als x χ²(v1 d.f.) en y χ²(v2 d.f.) met x en y onderling onafhankelijk, dan is x+y χ²(v1+v2 d.f.).
Als n>30, nadert de χ²-verdeling met n d.f. naar N(n,√2𝑛)
²( ) ̅
=∑ ² χ²(n-1 d.f.) verdeeld

De t verdeling (= student verdeling)
Verhouding van normaal verdeelde variabele z tot de vkw van χ² verdeelde veranderlijke y, gedeeld door v.
t(v d.f.) x= µ=0 σ² =

µ
t(n-1 d.f.) verdeeld, (x normaal verdeeld). Voor v ≥ 30 is het nagenoeg N(0,1) verdeeld.



De F verdeling (=Fisher distributie)
x is quotiënt van 2 onafhankelijke χ² verdeelde variabelen u en v, beiden gedeeld door hun vrijheidsgraden
²( )
F(v1,v2 d.f.) x= steeds positief µ= voor 𝑣 >2 σ² = ( )( )²
voor 𝑣 >4

Eigenschappen: x: F(v1,v2 d.f.)  : F(v2,v1 d.f.) en F1-α (v2,v1 d.f.) = ( , . .)
/
Eigenschap: als z: N(0,1) en y: χ²(v d.f.), dan is x = t(v d.f.), en is x²= /
F(1,v d.f.) verdeeld.

3
$6.65
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten


Ook beschikbaar in voordeelbundel

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
indinginf Universiteit Gent
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
1083
Lid sinds
6 jaar
Aantal volgers
446
Documenten
1
Laatst verkocht
3 weken geleden
Industrieel Ingenieur UGENT

Hallo! Ik studeer industrieel ingenieur informatica aan de UGent, modeltraject. Het kan zijn dat ik nog documenten heb staan die ik hier niet heb opgezet. Indien je hulp nodig hebt bij een bepaald vak, stuur me gerust. Als je opmerkingen of vragen hebt, aarzel niet om mij te contacteren. Ik beantwoord alle vragen graag! Veel succes!

4.6

22 beoordelingen

5
19
4
1
3
0
2
1
1
1

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen