100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
College aantekeningen

ST201 Notes

Beoordeling
5.0
(1)
Verkocht
4
Pagina's
30
Geüpload op
12-05-2020
Geschreven in
2019/2020

Covers all content in ST201 Statistical Models and Data Analysis at LSE

Instelling
Vak










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
12 mei 2020
Aantal pagina's
30
Geschreven in
2019/2020
Type
College aantekeningen
Docent(en)
Onbekend
Bevat
Alle colleges

Onderwerpen

Voorbeeld van de inhoud

ST201 Notes

1. Nominal/Categorical: formed by categories that cannot be ranked, e.g. eye colour, religion.
2. Dichotomous/Binary: nominal variables with only two categories, e.g male and female,
alive and dead.
3. Ordinal: categories can be ranked but the distance between categories may not be equal
across the range; e.g. gears (1,2,3,4,5), exam results (A, B, C, D, E, U).
4. Continuous: variables can take any value in a range, e.g. speed, weight, time.




Mode: The value that occurs most frequently, if it exists
Median: The (½(n+1))th value; it is robust to outliers

Mean: 1 / n∑x = x bar; it is sensitive to outliers

Range: the difference between the highest and lowest values

Standard deviation or S.D.:




Pearson’s correlation r: ranges from -1 to +1




Spearman’s ρ also ranges from -1 to +1 but is based on the ranking of the values.

Specifically, it is defined as the Pearson correlation coefficient between the ranked variables
and is a more general correlation which can be applied to non-linear but monotonic
relationships.


Skewness

,It is important to extend univariate statistics to express the symmetry or lack of symmetry of
data.

For left skewness, mean < median < mode
For right skewness, mode < median < mean
For symmetry, mode = median = mean




Statistical Inference

The analysis of sample data to draw conclusions (inferences) about the population from
which the sample was taken.

Important terminology:

− Parameter: a value, usually unknown, used to represent a population characteristic – within
a population, a parameter is a fixed value – normally represented by a Greek letter. –

, Estimator: a rule for calculating an estimate based on sample data and used to approximate a
parameter from the population – normally represented by a Roman letter

The analysis of sample data to draw conclusions (inferences) about the population from
which the sample was taken.

− An Estimate is the value obtained after calculating an estimator using data from a particular
sample
– unlike a parameter, estimates are not fixed
– they vary across samples reflecting sampling variability

We can draw different samples and from each of them obtain an estimate to assess the
properties of a particular estimator.

In doing so it is vital that we use randomly picked samples (simple random samples), to
ensure that the samples are representative of the population.

The distribution of the different estimates obtained from each sample is known as the
sampling distribution.

The mean of this distribution is the point estimate and the observations around it, or the area
around it, constitutes the uncertainty

Ideally, we want unbiased and precise estimators.

The former requires the expectation of the estimator being equal to the population parameter,
e.g. E(X bar) = 

The latter requires that the standard deviation of the sampling distribution, i.e. the standard
error of the estimator (or SE), to be as small as possible.

Put another way, we require estimators to be close to the target population parameter and to
have small variance.

Central Limit Theorem

The key to statistical inference is the sampling distribution of an estimator.

According to the central limit theorem:

− for large samples (in practice size > about 30)
− from a population with mean μ and standard deviation σ
− the sample mean will be approximately normally distributed
− with mean μ and standard deviation σ/√n n
− regardless of how the population is distributed.


So, although we will usually just take one sample and obtain one single point estimate,
invoking the central limit theorem and the properties of a normal distribution, we can assess
the uncertainty surrounding such an estimate.

Beoordelingen van geverifieerde kopers

Alle reviews worden weergegeven
2 jaar geleden

5.0

1 beoordelingen

5
1
4
0
3
0
2
0
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
henryrayner London School of Economics
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
61
Lid sinds
7 jaar
Aantal volgers
43
Documenten
37
Laatst verkocht
9 maanden geleden

3.5

22 beoordelingen

5
2
4
10
3
8
2
2
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen