Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Autre

Bedrijfsstatistiek uitgewerkte oefeningen en voorbeeldexamenvragen 18/20 eerste zit

Vendu
23
Pages
134
Publié le
23-01-2025
Écrit en
2024/2025

In dit document vind je alle uitgewerkte oefeningen van kansrekenen, beschrijvende statistiek en statistiek (gedoceerd door prof. Claeskens). Zowel de oefeningen het handboek, de E reeks als de voorbeeldexamenvragen van beiden boeken (hoofdstuk 1 - 10) zijn uitgewerkt. De oefeningen zijn op een gestructureerde manier gemaakt en met de nodige tussenstappen of uitleg.

Montrer plus Lire moins
Établissement
Cours

















Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

Livre connecté

École, étude et sujet

Établissement
Cours
Cours

Infos sur le Document

Publié le
23 janvier 2025
Nombre de pages
134
Écrit en
2024/2025
Type
Autre
Personne
Inconnu

Sujets

Aperçu du contenu

HOOFDSTUK 1
KANSREKENEN

,Combinatieleer
1▢

2▢


3▢


4▢


5▢


6▢

7▢


8▢


9▢


10 ▢


11 ▢


12 ▢

13 ▢

,Reeks A
1 a▢ b▢ 9 a▢ b▢

c▢ d▢ c▢

e▢


10 ▢

2 a▢ b▢


c▢ d▢ 11 a▢ b▢


e▢ c▢ d▢




3 a▢ b▢ extra ▢


c▢




4 a▢ b▢

c▢ d▢




5▢




6 a▢ b▢

c▢ d▢




7 a▢ b▢


c▢




8 a▢ b▢

c▢ d▢

e▢

,Reeks E
1▢

2 a▢ b▢

c▢


3 a▢ b▢

c▢


4▢


5▢

6▢


7▢


8▢


9 a▢ b▢

c▢ d▢

e▢


10 ▢

11 a▢ b▢


c▢ d▢

e▢ f▢

12 ▢


13 a▢ b▢

14 ▢


15 ▢

16 ▢

,voorbedden


n .
15
mogelijkheden = 15 .
9 .
27




↳. 1 6
mogelijkheden = (3) .
3 ! = 9 8 7
. .
=
9 !

(9 -
3) !

hier s van de 9 onder die




107
#
>
mogelijkheden =




het
↳ 17.


verjaardagsprobleem
kone dat e
de mensen op dezelfde dag jenig zijn (A)




complement



de hams dat iedereen andere
1
op un
dag jorig is (B)




geen huhding volgonde ,




Sjane jan s ,
en
Sjan1 janz .
is en andere
mogelijkheid
↑ (B) = 1365 -
11 .
(365 -




365m
2 .... (355 -
m + 1) laplace even waarschijnlijk


(2) complement

↑ (A) = 1 =
(365 -
11 .
(365-2 .... (365 -
M + 1)


365m



kans op troch


de hene dat e speler ten minste s von 4 are n
heeft
onghankelijk de hom haart wordt niet beinvloed daar haart X
·



op y
:




uniform (Laplace
·




(1) homs op 3 azen (A) (2) home op 4 aven (B)



PCA) =
(3) (1)
.

P(B) = (4) 14 .




15 (4)

!

=
: 14
3 ·
31 ! 10 : na !
= 0. 00264
59 !

13 ! (52-13) !




= 0 .
0412




= de kans dat speler 1 troel
heeft : PCA) + PCBL


Lebben
die junct je ,
hen niet san en 4 ah

, a
zijn y spelers ,
whe speler heeft deze hore (T




disjunct ,
i Lan maar I iemand troel hebben


=> P(T) = % . (0 0412
. + 0, 002614)



= 17 .
5256 %




D . 21 PCMMIM) =
SHM .
MJ ,
JHS


=


P(AIT) ↑ (A) PCTIA)
D . 23 (1) = .




↑c totale heus



398
op


↑ (A) PCTIA) .
+



= 0. 001 . 0 .




=
1
tegenexpertise
PCAITTI =
PITTIA) PCA) .




↑ totale kons TTC




↑ (A) PITTIA) . # PLA') PCFTIA .




= 0 . 001 . 10 .
9901" + 0. 959 .
10 .
00512



= 0 . 001 . 10 .
996)
0
. 001020979


= 97 .
547 %




als te
p .
27
eerlijk the persoon renval kams
heeft om winnen



111
J :
persoon I radt
juist

Fi persoon i raadt
fout


P (F)
P(j ,
) =


= N = 1

N



Y! =

!.
N-1
P(F) =

N1
.
N
y N N -
1


:




↑ n' -R 1. N1 Noe .....Na
= - M
N + . t N




(2) N= M en N uelvoud n n

, PCMMIT) PCTIMM) NCMM)
. 30
p = .




totale kars op T




NCHM)
CTIMM .
+
NCTIMJ) PCrys . + PC +1
JH) PCjM,
.




52 52 52
= 1 . 0 .
+
1 .
0. +
1 .
0.




= 1 . 0. 52
0. 5


= 0. 5




D 42
. (1) 1 dobbelsteen


in 4 minstens (A)
gosich
e zes
worpen


"
P(A)
15 ,
= 1 -




= 0. 517 7




12 in zu worpen minstens 2 zenen (B)



P(B) 1
(3)
-
=




= 0. 4914




extra Een persoon liegt met kans 1/5. Deze persoon trekt willekeurig een kaart uit een volledig kaartspel, kijkt er naar en zegt
"ik heb geen hartenkaart getrokken". Met dit als gegeven, hoeveel bedraagt de kans dat deze persoon wel een
hartenkaart trok? (In een kaartspel zijn er harten, ruiten, schoppen en klaveren kaarten, van iedere soort evenveel.)

liegen in
onafhankelijk van de
getrotten haart

2 . PLANB) = TAI X(B) .




beroom liegt (T)



dat hartenhaart treht
pesom zegt hij en (A)




PCTIA') =
4(A'IT) .
PCT)
↑ (A'ITI .
PCT) + PCAIT'C PCT'S .




15
+
?
=

,combinatielen

1 .


volgonde ,
geen Lerkeling
4 ! = [4




2.
volgorde ,
geen herhaling
12 !




3 .

volgorde ,
gem herhaling
7 ! 5 !




4.
volgorde ,
gem herhaling
21 .
5 !. 7 !


de hant waarop
welke nummer is onbepaald




5 .


geen volgonde ,
geen hankeling
2 (1) 10 !
2 18 17 306
22
. = = . . =


2 (18 -
2



uit
thuis en
gespeeld


6 .


geen volgonde ,
geen hankeling
121
= 21 !
= 20 .




2
19 = 190




7 .


volgorde ,
geen herhaling
7 ! = 5040




8 .

volgonde ,
geen herhaling
3 ! 4 ! 2 ! = 200



de
zomerjassen kunnen eent of de
winterjassen


.
9
volgorde ,

geen helding
5040
(5) kiest de moet dee rankschikken cheme *

velgordes
je
. 6 5 4
7 3
jauen
2
. . . .
= = . 5 ! 5 van 7 en 5
jassen



no .

volgorde ,

geen helding
7
. 6 . 5 4
. . 3 = 2520

,n .


volgonde ,
geen herhaling
131 14)
. .
3 !




12 .


geen volgorde ,
geen hukeling
(1) (89) (130
. .




13 .

rolgorde ,
geen herhaling
klem
MAAR
geen volgorde verschil tussen
dezelfde
indien allemaa unich 0 !


= correctie 3!
groem

rood 5 !


6 ! =
(8) =
(0)
3! 5 !

, reche A



1 . a n =
[RRK ,
1LL .
535]


b B = (RL5 .
IRS ,
LSR ,
RSL ,
SRL , SLRY # combinaties = 3! = 6




C c = [RR3 ,
RRL ,
RSR .
RLR ,
CRR . SRRY


d D = [RRS .
RRL .
RSR ,
RLR ,
LRK ,
SRR ,
115 .
LCR, . . .
!


allemaal verschillend
e D' = er
rijden geen twee auto's in
dezelfde richting :
of hetzelfde
CND = c
aangezien (CD




CUD = D




.
2 ar = (555 ,
55F .
SFF ,
FFF ,
F55 ,
FFS . SF5]


b A = (55F .
SFS , F55]


[ B (557
=

.
SFS ,
F55 , 535]


d c = (55F .
SFS , 355]


e = het
systeem werkt niet


Auc = minsten twee componenten waken


Anc =< 5 FS .
55F)


BUC = B




BUC = C




.
3 a PLAUB) = PIA) + P(B) -
PLANBL

A B

= 0. 5 + 0 .
4 -
0 .
25




= 0. 65




↓ PLAUB)' = 1 -
PLAUB)

A B

= 0 .
35




< P(A B) = P(A) ·
PLANB)

A B

= 0 .
25




4 .
a er
zijn nog andere zahen die worden
uitgeleend


b PCA') = 1 -
P(A)



= 0. 65
$15.70
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Avis des acheteurs vérifiés

Affichage de tous les 2 avis
3 semaines de cela

4 mois de cela

4.5

2 revues

5
1
4
1
3
0
2
0
1
0
Avis fiables sur Stuvia

Tous les avis sont réalisés par de vrais utilisateurs de Stuvia après des achats vérifiés.

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
LenaersIsolde Katholieke Universiteit Leuven
S'abonner Vous devez être connecté afin de pouvoir suivre les étudiants ou les formations
Vendu
116
Membre depuis
3 année
Nombre de followers
13
Documents
7
Dernière vente
15 heures de cela

4.2

18 revues

5
10
4
5
3
1
2
1
1
1

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions