,SOLUTION MANUAL
Game Theory Basics 1st Edition
By Bernhard von Stengel. Chapters 1 - 12
2
,TABLE OF CONTENTS MB MB MB
1 - Nim and Combinatorial Games
MB MB MB MB MB
2 - Congestion Games
MB MB MB
3 - Games in Strategic Form
MB MB MB MB MB
4 - Game Trees with Perfect Information
MB MB MB MB MB MB
5 - Expected Utility
MB MB MB
6 - Mixed Equilibrium
MB MB MB
7 - Brouwer’s Fixed-Point Theorem
MB MB MB MB
8 - Zero-Sum Games
MB MB MB
9 - Geometry of Equilibria in Bimatrix Games
MB MB MB MB MB MB MB
10 - Game Trees with Imperfect Information
MB MB MB MB MB MB
11 - Bargaining
MB MB
12 - Correlated Equilibrium
MB MB MB
3
, Game Theory Basics MB MB
Solutions to Exercises M B M B
© M B Bernhard von Stengel 2022 MB MB MB
Solution to Exercise 1.1 MB MB MB
(a) Let ≤ be defined by (1.7). To show that ≤ is transitive, consider x, y, z with x ≤ y and y ≤
MB MB MB MB MB M B MB MB MB MB MB MB MB MB MB MB MB M B MB MB MB MB MB
z. If x = y then x ≤ z, and if y = z then also x ≤ z. So the only case left is x < y and y
MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB
< z, which implies x < z because < is transitive, and hence x ≤ z.
MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB
Clearly, ≤ is reflexive because x = x and therefore x ≤ x.
MB MB MB MB MB MB MB MB MB MB MB MB
To show that ≤ is antisymmetric, consider x and y with x ≤y and y ≤ x. If we had
MB MB MBMBMBMBMB MB MB MB MB MB MB MB MBMBMBMBMB MB MB MBMBMBMBMB MB MB MB MB
x ≠ y then x < y and y < x, and by transitivity x < x which contradicts (1.38). Hence x =
MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB
y, as required. This shows that ≤ is a partial order.
MB MB MB MB MB MB MB MB MB MB MB
Finally, we show (1.6), so we have to show that x < y implies x y and
MB MB
≤ x ≠ y and vice v
MB MB MB MB MB MB MB MB MB MB MB MB MBMBMB MB MB MB MB MB MB MB
ersa. Let x < y, which implies x y by (1.7). If≤ we had x = y then x < x, contradicting (1.3
MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB
8), so we also have x ≠ y. Conversely, x y and x ≠ y imply by
MB MB MB MB
≤ (1.7)x < y or x = y where
MB MB MB MB MB MBMBM B MB MB MB MB MB MB MB B
M MB MB MB MB MB MB MB MB
the second case is excluded, hence x < y, as required.
MB MB MB MB MB MB MB MB MB MB
(b) Consider a partial order and ≤ assume (1.6) as a definition of <. To show that < is transiti
MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB
ve, suppose x < y, that is, x y and x ≠≤y, and y < z, that is, y z and y ≠ z. ≤
MB MB MB Because
MB MBis t MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MBMBMBMB MB
ransitive, ≤
x z. If we had ≤
x = z then x y and y
MB x≤and hence≤x = y by antisymmet
MBMBMBMB MB MB MB MB MB MB MB MB MBMBMBMBMB MB MB MBMBMBMBMB MB MB MB MB MB MB MB
ry of , which contradicts x ≠ y, so we have x z and x ≠ z, that is,x < z by (1.6),
≤ ≤
MB MBMBMBMB MB MB MB MB MB MB MB MB MB MBMBMBMB MB MB MB MB MB MB B
M MB MB MB MB MB
as required. MB
Also, < is irreflexive, because x < x would by definition mean x
MB MB MB MB MB MB MB MB MB MB MB MB MBMBMB x and
≤ x ≠ x, but the la
MB MB MB MB MB MB MB
tter is not true.
MB MB MB
Finally, we show (1.7), so we have to show that x ≤ y implies x < y or x = y and vice v
MB MB MB MB MB MB MB MB MB MB M B MB MB MB MB MB MB MB MB MB MB MB MB
ersa, given that < is defined by (1.6). Let x ≤ y. Then if x = y, we are done, otherwise x
MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB
≠ y and then by definition x < y. Hence, x ≤ y implies x < y or x = y. Conversely, suppos
MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB
e x < y or x = y. If x < y then x ≤ y by (1.6), and if x = y then x ≤ y because ≤ i
MB M B M B MB MB MB MB M B MB M B M B MB MB M B MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB
s reflexive. This completes the proof.
MB MB MB MB MB
Solution to Exercise 1.2 MB MB MB
(a) In analysing the games of three Nim heaps where one heap has size one, we first lookat
MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB BM MB
some examples, and then use mathematical induction to prove what we conjecture to be the lo
MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB
sing positions. A losing position is one where every move is to a winning position, becau
MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB
se then the opponent will win. The point of this exercise is to formulate a precise stateme
MB MB MB MB MB M B MB MB MB MB MB MB MB MB MB MB
nt to be proved, and then to prove it.
MB MB MB MB MB MB MB MB
First, if there are only two heaps recall that they are losing if and only if the heaps are
MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB
of equal size. If they are of unequal size, then the winning move is to reduce thelarger h
MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB B
M MB
eap so that both heaps have equal size.
MB MB MB MB MB MB MB
4