100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

SOLUTION MANUAL Game Theory Basics 1st Edition By Bernhard von Stengel. Chapters 1 - 12

Beoordeling
-
Verkocht
-
Pagina's
71
Geüpload op
18-01-2025
Geschreven in
2024/2025

SOLUTION MANUAL Game Theory Basics 1st Edition By Bernhard von Stengel. Chapters 1 - 12

Instelling
Game Theory Basics 1st Edition By Bernhard Von St
Vak
Game Theory Basics 1st Edition By Bernhard Von St











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Game Theory Basics 1st Edition By Bernhard Von St
Vak
Game Theory Basics 1st Edition By Bernhard Von St

Documentinformatie

Geüpload op
18 januari 2025
Aantal pagina's
71
Geschreven in
2024/2025
Type
Tentamen (uitwerkingen)
Bevat
Onbekend

Onderwerpen

  • bernhard von stengel

Voorbeeld van de inhoud

1

,SOLUTION MANUAL
Game Theory Basics 1st Edition
By Bernhard von Stengel. Chapters 1 - 12




2

,TABLE OF CONTENTS MB MB MB




1 - Nim and Combinatorial Games
MB MB MB MB MB




2 - Congestion Games
MB MB MB




3 - Games in Strategic Form
MB MB MB MB MB




4 - Game Trees with Perfect Information
MB MB MB MB MB MB




5 - Expected Utility
MB MB MB




6 - Mixed Equilibrium
MB MB MB




7 - Brouwer’s Fixed-Point Theorem
MB MB MB MB




8 - Zero-Sum Games
MB MB MB




9 - Geometry of Equilibria in Bimatrix Games
MB MB MB MB MB MB MB




10 - Game Trees with Imperfect Information
MB MB MB MB MB MB




11 - Bargaining
MB MB




12 - Correlated Equilibrium
MB MB MB




3

, Game Theory Basics MB MB




Solutions to Exercises M B M B




© M B Bernhard von Stengel 2022 MB MB MB




Solution to Exercise 1.1 MB MB MB




(a) Let ≤ be defined by (1.7). To show that ≤ is transitive, consider x, y, z with x ≤ y and y ≤
MB MB MB MB MB M B MB MB MB MB MB MB MB MB MB MB MB M B MB MB MB MB MB


z. If x = y then x ≤ z, and if y = z then also x ≤ z. So the only case left is x < y and y
MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB


< z, which implies x < z because < is transitive, and hence x ≤ z.
MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB




Clearly, ≤ is reflexive because x = x and therefore x ≤ x.
MB MB MB MB MB MB MB MB MB MB MB MB




To show that ≤ is antisymmetric, consider x and y with x ≤y and y ≤ x. If we had
MB MB MBMBMBMBMB MB MB MB MB MB MB MB MBMBMBMBMB MB MB MBMBMBMBMB MB MB MB MB



x ≠ y then x < y and y < x, and by transitivity x < x which contradicts (1.38). Hence x =
MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB



y, as required. This shows that ≤ is a partial order.
MB MB MB MB MB MB MB MB MB MB MB




Finally, we show (1.6), so we have to show that x < y implies x y and
MB MB
≤ x ≠ y and vice v
MB MB MB MB MB MB MB MB MB MB MB MB MBMBMB MB MB MB MB MB MB MB



ersa. Let x < y, which implies x y by (1.7). If≤ we had x = y then x < x, contradicting (1.3
MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB



8), so we also have x ≠ y. Conversely, x y and x ≠ y imply by
MB MB MB MB
≤ (1.7)x < y or x = y where
MB MB MB MB MB MBMBM B MB MB MB MB MB MB MB B
M MB MB MB MB MB MB MB MB



the second case is excluded, hence x < y, as required.
MB MB MB MB MB MB MB MB MB MB




(b) Consider a partial order and ≤ assume (1.6) as a definition of <. To show that < is transiti
MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB



ve, suppose x < y, that is, x y and x ≠≤y, and y < z, that is, y z and y ≠ z. ≤
MB MB MB Because
MB MBis t MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MBMBMBMB MB



ransitive, ≤
x z. If we had ≤
x = z then x y and y
MB x≤and hence≤x = y by antisymmet
MBMBMBMB MB MB MB MB MB MB MB MB MBMBMBMBMB MB MB MBMBMBMBMB MB MB MB MB MB MB MB



ry of , which contradicts x ≠ y, so we have x z and x ≠ z, that is,x < z by (1.6),
≤ ≤
MB MBMBMBMB MB MB MB MB MB MB MB MB MB MBMBMBMB MB MB MB MB MB MB B
M MB MB MB MB MB



as required. MB




Also, < is irreflexive, because x < x would by definition mean x
MB MB MB MB MB MB MB MB MB MB MB MB MBMBMB x and
≤ x ≠ x, but the la
MB MB MB MB MB MB MB



tter is not true.
MB MB MB




Finally, we show (1.7), so we have to show that x ≤ y implies x < y or x = y and vice v
MB MB MB MB MB MB MB MB MB MB M B MB MB MB MB MB MB MB MB MB MB MB MB


ersa, given that < is defined by (1.6). Let x ≤ y. Then if x = y, we are done, otherwise x
MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB


≠ y and then by definition x < y. Hence, x ≤ y implies x < y or x = y. Conversely, suppos
MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB


e x < y or x = y. If x < y then x ≤ y by (1.6), and if x = y then x ≤ y because ≤ i
MB M B M B MB MB MB MB M B MB M B M B MB MB M B MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB


s reflexive. This completes the proof.
MB MB MB MB MB




Solution to Exercise 1.2 MB MB MB




(a) In analysing the games of three Nim heaps where one heap has size one, we first lookat
MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB BM MB



some examples, and then use mathematical induction to prove what we conjecture to be the lo
MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB



sing positions. A losing position is one where every move is to a winning position, becau
MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB



se then the opponent will win. The point of this exercise is to formulate a precise stateme
MB MB MB MB MB M B MB MB MB MB MB MB MB MB MB MB



nt to be proved, and then to prove it.
MB MB MB MB MB MB MB MB




First, if there are only two heaps recall that they are losing if and only if the heaps are
MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB



of equal size. If they are of unequal size, then the winning move is to reduce thelarger h
MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB MB B
M MB



eap so that both heaps have equal size.
MB MB MB MB MB MB MB




4

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
SkillForge MY OWN RESEARCHED CONTENT
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
75
Lid sinds
11 maanden
Aantal volgers
12
Documenten
789
Laatst verkocht
1 week geleden
PILLARS OF WISDOM

A+ GRADED EXAMS, TESTBANKS, SOLUTION MANUALS &amp; OTHER STUDY MATERIALS SHOP!!!! In my academic shop you will find A+ &amp; TOP RATED Academic study materials that Guarantees straight A's in your studies. Buy without doubt and always leave a positive review!!! Be sure to expect Top Class Customer Service!!!!

3.3

9 beoordelingen

5
2
4
2
3
3
2
1
1
1

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen