100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

Solution Manual for Game Theory Basics 1st Edition By Bernhard von Stengel, ISBN: 9781108843300, All 12 Chapters Covered

Rating
5.0
(1)
Sold
-
Pages
70
Grade
A+
Uploaded on
17-01-2025
Written in
2024/2025

Solution Manual for Game Theory Basics 1st Edition By Bernhard von Stengel, ISBN: 9781108843300, All 12 Chapters Covered

Institution
Course Game Theory Basics
Module
Course Game theory basics











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Course Game theory basics
Module
Course Game theory basics

Document information

Uploaded on
January 17, 2025
Number of pages
70
Written in
2024/2025
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Content preview

SOLUTION MANUAL
Game Theory Basics 1st Edition
By Bernhard von Stengel. Chapters 1 - 12




1

,TABLE OF CONTENTS Q Q Q




1 - Nim and Combinatorial Games
Q Q Q Q Q




2 - Congestion Games
Q Q Q




3 - Games in Strategic Form
Q Q Q Q Q




4 - Game Trees with Perfect Information
Q Q Q Q Q Q




5 - Expected Utility
Q Q Q




6 - Mixed Equilibrium
Q Q Q




7 - Brouwer’s Fixed-Point Theorem
Q Q Q Q




8 - Zero-Sum Games
Q Q Q




9 - Geometry of Equilibria in Bimatrix Games
Q Q Q Q Q Q Q




10 - Game Trees with Imperfect Information
Q Q Q Q Q Q




11 - Bargaining
Q Q




12 - Correlated Equilibrium
Q Q Q




2

,Game Theory Basics
Q Q




SolutionsQ toQ Exercises
©Q BernhardQvonQStengelQ2022

SolutionQtoQExerciseQ1.1

(a) LetQ≤QbeQdefinedQbyQ(1.7).Q ToQshowQthatQ≤QisQtransitive,QconsiderQx,Qy,QzQwithQxQ ≤QyQandQyQ≤Q
z.QIfQxQ=QyQthenQxQ≤Qz,QandQifQyQ=QzQthenQalsoQxQ≤Qz.QSoQtheQonlyQcaseQleftQisQxQ<QyQandQ y
Q <Q z,QwhichQimpliesQ xQ <Q zQbecauseQ<QisQtransitive,QandQhenceQ xQ ≤Qz.

Clearly,Q≤QisQreflexiveQbecauseQxQ=QxQandQthereforeQxQ≤Qx.
ToQshowQthatQQQQQ
≤ isQantisymmetric,QconsiderQxQandQyQwithQxQQQQQ
≤ yQandQyQQQQQ
≤ x.QIfQweQha
dQxQ≠QyQthenQxQ<QyQandQyQ<Qx,QandQbyQtransitivityQxQ<QxQwhichQcontradictsQ(1.38).QHenceQ
xQ=Q y,QasQrequired.Q ThisQshowsQthatQ≤QisQaQpartialQorder.
Finally,QweQshowQ(1.6),QsoQweQhaveQtoQshowQthatQxQ<QyQimpliesQxQQQyQand
≤ QxQ≠QyQandQviceQ
versa.QLetQxQ<Qy,QwhichQimpliesQxQyQbyQ(1.7).≤QIfQweQhadQxQ=QyQthenQxQ<Qx,QcontradictingQ(1.

38),QsoQweQalsoQhaveQxQ≠Qy.Q Conversely,QxQQQ yQandQxQ≠QyQimply
≤QbyQ(1.7)QxQ <Q yQorQxQ =Q yQwhe
reQtheQsecondQcaseQisQexcluded,QhenceQ xQ <Q y,QasQrequired.
(b) ConsiderQaQpartialQorderQand ≤ QassumeQ(1.6)QasQaQdefinitionQofQ<.QToQshowQthatQ<QisQtransi
tive,QsupposeQxQ<Qy,QthatQis,QxQyQandQx≤
Q≠Qy,QandQyQ<Qz,QthatQis,QyQzQandQyQ≠Qz.QBecauseQQQQi

sQtransitive,
≤ QxQQQQz.QIfQweQhadQxQ=QzQthenQxQQQQQyQandQyQQQQQxQandQhenceQxQ=QyQbyQantisy
≤ ≤ ≤
mmetryQofQQQQ,QwhichQcontradictsQ xQ ≠Q y,QsoQweQhaveQ xQQQQzQandQ xQ ≠Q z,QthatQis,QxQ <Q zQbyQ(
≤ ≤
1.6),QasQrequired.
Also,Q<QisQirreflexive,QbecauseQxQ<QxQwouldQbyQdefinitionQmeanQxQQQxQand
≤ QxQ≠Qx,QbutQtheQl
atterQisQnotQtrue.
Finally,QweQshowQ(1.7),QsoQweQhaveQtoQshowQthatQxQ ≤QyQimpliesQxQ<QyQorQxQ=QyQandQviceQv
ersa,QgivenQthatQ<QisQdefinedQbyQ(1.6).QLetQxQ≤Qy.QThenQifQxQ=Qy,QweQareQdone,QotherwiseQx
Q≠QyQandQthenQbyQdefinitionQxQ<Qy.QHence,QxQ≤QyQimpliesQxQ<QyQorQxQ=Qy.QConversely,Qsupp

oseQxQ <Q yQorQxQ=Qy.Q IfQxQ <Q yQthenQxQ ≤QyQbyQ(1.6),QandQifQxQ=QyQthenQxQ ≤Q yQbecauseQ≤Qis
Qreflexive.Q ThisQcompletesQtheQproof.



SolutionQtoQExerciseQ1.2

(a) InQ analysingQ theQ gamesQ ofQ threeQ NimQ heapsQ whereQ oneQ heapQ hasQ sizeQ one,Q weQ firstQ lookQatQs
omeQexamples,QandQthenQuseQmathematicalQinductionQtoQproveQwhatQweQconjectureQtoQbeQtheQlo
singQpositions.QAQlosingQpositionQisQoneQwhereQeveryQmoveQisQtoQaQwinningQposition,Qbeca
useQthenQtheQopponentQwillQwin.Q TheQpointQofQthisQexerciseQisQtoQformulateQaQpreciseQstatem
entQtoQbeQproved,QandQthenQtoQproveQit.
First,QifQthereQareQonlyQtwoQheapsQrecallQthatQtheyQareQlosingQifQandQonlyQifQtheQheapsQare
QofQequalQsize.Q IfQtheyQareQofQunequalQsize,QthenQtheQwinningQmoveQisQtoQreduceQtheQlarger

QheapQsoQthatQbothQheapsQhaveQequalQsize.




3

, ConsiderQthreeQheapsQofQsizesQ1,Qm,Qn,QwhereQ1QQQQQ ≤ mQQQQQ
≤ n.QWeQobserveQtheQfollowing:Q
1,Q1,QmQisQwinning,QbyQmovingQtoQ1,Q1,Q0.QSimilarly,Q1,Qm,QmQisQwinning,QbyQmovingQtoQ0,
Qm,Qm.QNext,Q1,Q2,Q3QisQlosingQ(observedQearlierQinQtheQlecture),QandQhenceQ1,Q2,QnQforQnQ

4QisQwinning.Q1,Q3,QnQisQwinningQforQanyQnQ3QbyQmovingQtoQ1,Q3,Q2.QForQ1,Q4,Q5,Qreducing
≥ ≥
QanyQheapQproducesQaQwinningQposition,QsoQthisQisQlosing.


TheQgeneralQpatternQforQtheQlosingQpositionsQthusQseemsQtoQbe:Q1,Qm,QmQ1,Qfor
+ QevenQnum
bersQm.Q ThisQincludesQalsoQtheQcaseQmQ=Q0,QwhichQweQcanQtakeQasQtheQbaseQcaseQforQanQind
uction.Q WeQnowQproceedQtoQproveQthisQformally.
FirstQweQshowQthatQifQtheQpositionsQofQtheQformQ1,Qm,QnQwithQmQQQQQQ ≤ nQareQlosingQwhenQ
mQisQevenQandQnQ=QmQ1, +QthenQtheseQareQtheQonlyQlosingQpositionsQbecauseQanyQotherQpositi
onQ1,Qm,QnQ withQmQ Q nQ is≤
Qwinning.Q Namely,QifQmQ =QnQ thenQaQwinningQmoveQfromQ1,Qm,QmQi

sQtoQ0,Qm,Qm,QsoQweQcanQassumeQmQ<Qn.Q IfQmQisQevenQthenQnQ>QmQ Q 1Q(otherwiseQweQwouldQb
+
eQinQtheQpositionQ1,Qm,QmQ Q 1)QandQsoQtheQwinningQmoveQisQtoQ1,Qm,QmQ Q 1.QIfQmQisQoddQth
+ +
enQtheQwinningQmoveQisQtoQ1,Qm,QmQ1,QtheQsameQasQpositionQ1,QmQ1,QmQ(thisQwouldQ alsoQ beQ aQ
winningQ moveQ fromQ 1,Qm,QmQ soQ thereQ theQ winning–Q moveQ isQ notQ unique). −

Second,QweQshowQthatQanyQmoveQfromQ1,Qm,QmQ+Q1QwithQevenQmQisQtoQaQwinningQposition,Qusi
ngQasQinductiveQhypothesisQthatQ1,QmJ,QmJQ+Q1QforQevenQmJQandQmJQ<QmQisQaQlosingQposition
.QTheQmoveQtoQ0,Qm,QmQ+Q1QproducesQaQwinningQpositionQwithQcounter-
moveQtoQ0,Qm,Qm.QAQmoveQtoQ1,QmJ,QmQ+Q1QforQmJQ<QmQisQtoQaQwinningQpositionQwithQtheQcou
nter-
moveQtoQ1,QmJ,QmJQ+Q1QifQmJQisQevenQandQtoQ1,QmJ,QmJQ−Q1QifQmJQisQodd.QAQmoveQtoQ1,Qm,Q
mQisQtoQaQwinningQpositionQwithQcounter-
moveQtoQ0,Qm,Qm.QAQmoveQtoQ1,Qm,QmJQwithQ mJQ<Q mQisQalsoQtoQaQwinningQpositionQwithQtheQc
ounter-
moveQtoQ1,QmJQ−Q1,Qm+J J J J J
+QevenQ(inQwhichQcaseQmJQ 1Q
QifQ m QisQodd,QandQtoQ1,Qm Q 1,Qm QifQm Qis

<QmQbecauseQmQisQeven).QThisQconcludesQtheQinductionQproof.
ThisQresultQisQinQagreementQwithQtheQtheoremQonQNimQheapQsizesQrepresentedQasQsumsQofQpow
ersQofQ2:Q 1Q Q∗Qm+∗ 0
Q Q nQisQlosingQifQandQonlyQif,QexceptQforQ2 ,QtheQpowersQofQ2QmakingQupQmQan
+∗
dQnQcomeQinQpairs.QSoQtheseQmustQbeQtheQsameQpowersQofQ2,QexceptQforQ1Q=Q20,QwhichQoccurs
QinQonlyQmQorQn,QwhereQweQhaveQassumedQthatQnQisQtheQlargerQnumber,QsoQ1QappearsQinQ theQ re

presentationQ ofQ n:Q WeQ haveQ mQ =Q 2aQQQQQQ2bQQQQQQ2c
+ + +Q ·Q ·Q ·
forQ aQ >Q bQ >Q cQ >QQQQQQQQ
·Qa·+
QQ ·Q
Q≥Q +bQ Q Q+Q ·cQ ·Q ·Q + +
1,QsoQ mQ isQ even,Q and,Q withQ theQ sameQ a,Qb,Qc,Q.Q.Q.,Q nQ =Q 2 2 2
1Q =Q mQQQQ 1.Q Then
∗1QQQQQQQ
+Q ∗ + mQQQQQQ
∗ nQQQQQQ 0.Q TheQ followingQ isQ anQ exampleQ usingQ theQ bitQ representationQ where
mQ=Q12Q(which
≡Q∗ QdeterminesQtheQbitQpatternQ1100,QwhichQofQcourseQdependsQonQm):


1 = 0001
12 = 1100
13 = 1101
Nim-sum 0 = 0000

(b) WeQuseQ(a).QClearly,Q1,Q2,Q3QisQlosingQasQshownQinQ(1.2),QandQbecauseQtheQNim-
sumQofQtheQbinaryQrepresentationsQ01,Q10,Q11QisQ00.QExamplesQshowQthatQanyQotherQposit
ionQisQwinning.QTheQthreeQnumbersQareQn,+QnQ 1,Q nQ Q 2.QIfQnQisQevenQthenQreducingQtheQheapQ
+
ofQsizeQnQ2QtoQ1QcreatesQtheQpositionQn,QnQ 1,Q1QwhichQisQlosingQasQshownQinQ(a).QIfQnQisQo
+ +
dd,QthenQnQ 1QisQevenQandQnQQQ2Q=Q nQQQ1QQQ1QsoQbyQtheQsameQargument,QaQwinningQmov
+ +
eQisQtoQreduceQtheQNimQheapQofQsizeQnQtoQ1Q(whichQonlyQworksQifQnQ >Q1).
(Q +Q )Q+

4

Reviews from verified buyers

Showing all reviews
8 months ago

5.0

1 reviews

5
1
4
0
3
0
2
0
1
0
Trustworthy reviews on Stuvia

All reviews are made by real Stuvia users after verified purchases.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
EliteScholars Teachme2-tutor
View profile
Follow You need to be logged in order to follow users or courses
Sold
39
Member since
11 months
Number of followers
6
Documents
994
Last sold
2 weeks ago
ACADEMIC HALL STORE!!!!

As a scholar you need a trusted source for your study materials and thats where we come in. Here you get TOP QUALITY; TESTBANKS, SOLUTION MANUALS, EXAMS &amp; OTHER STUDY MATERIALS!!!!!! 100% GUARANTEED Success When you purchase our documents, Please leave reviews so we can meet up to your satisfaction .''At academic hall store'' your good grades is our top priority!!!

4.9

235 reviews

5
230
4
2
3
1
2
0
1
2

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these revision notes.

Didn't get what you expected? Choose another document

No problem! You can straightaway pick a different document that better suits what you're after.

Pay as you like, start learning straight away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and smashed it. It really can be that simple.”

Alisha Student

Frequently asked questions