100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
College aantekeningen

Class notes Calculus

Beoordeling
-
Verkocht
-
Pagina's
1
Geüpload op
12-01-2025
Geschreven in
2024/2025

This is my class notes in my pre-calculus lecture. It contains the introduction to the different conic sections, their definitions, some illustrations as well as the main formula used for these conic sections.

Instelling
Junior / 11th Grade
Vak
Calculus








Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Junior / 11th grade
Vak
Calculus
School jaar
1

Documentinformatie

Geüpload op
12 januari 2025
Aantal pagina's
1
Geschreven in
2024/2025
Type
College aantekeningen
Docent(en)
Anonymous
Bevat
Introduction to conic sections pre-calculus lesson

Voorbeeld van de inhoud

Conic Sections Introduction
Friday, 13 December 2024 12:15 pm

The Greek mathematician Menaechmus, studied curves formed by the intersecting of a perpendicular plane and a cone
two millennia ago. He found that the intersection would form curves, which now became known as conic sections.

Apollonius of Perga also studied the curves formed by the intersection of a plane and a double right circular cone. He
discovered many properties of these curves and coined the following terms: ellipse, parabola, and hyperbola.

The cone was thought to have two parts that extended infinitely in both directions. A line lying entirely on the cone is
referred to as a generator and all generators of a cone pass through the intersection of the two parts called a vertex.

A conic section (or simply conic) is therefore a curve
formed by the intersection of a plane and a double right
circular cone.

Ellipse - if the cutting plane is not parallel to any
generator.
Circle - If the cutting plane is not parallel to any generator
but is perpendicular to the axis.
Hyperbola - if the cutting plane is parallel to two
generators.
Parabola - if the cutting plane is parallel to one and only
one generator.

Picture on page "Conic Sections Introduction"

The conic section above are called non-degenerate conics. It is when the cutting plane does not
pass through the vertex of the cone. When the cutting plane intersects the vertex of the cone, it is called
a degenerate cone. Some examples are: a point, line, and two intersecting lines.


If the early mathematicians were worried primarily about geometrical properties of conics, other
mathematicians discuss conics algebraically as curves of second degree equations rather than as
sections of the cone. English mathematician, John Wallis (1616-1703) was one of the first to describe
that all conics can be written in the form:

=0




References:
Argel, A., & Mallari, M.T., (2022). Next Century Mathematics 2nd Edition. Phoenix Publishing House, Inc.



Pre-Calculus 11 Page 1
Gratis
Krijg toegang tot het volledige document:
Downloaden

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
lopezchloeandree

Maak kennis met de verkoper

Seller avatar
lopezchloeandree
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
0
Lid sinds
11 maanden
Aantal volgers
0
Documenten
7
Laatst verkocht
-
Academic Scribbles

I sell class notes, exam reviewers and other study materials in a variety of subjects and topics from mathematics, sciences, communication, literature, etc.

0.0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen