First Course in Abstract Algebra A
8th Edition by John B. Fraleigh
All Chapters Full Complete
, CONTENTS
1. Sets and Relations
MX MX 1
I. Groups and Subgroups M X M X
2. Introduction and Examples 4 M X M X
3. Binary Operations 7 M X
4. Isomorphic Binary Structures 9 M X M X
5. Groups 13
6. Subgroups 17
7. Cyclic Groups 21
MXM X
8. Generators and Cayley Digraphs 24 M X M X M X
II. Permutations, Cosets, and Direct Products MX MX MX MX
9. Groups of Permutations 26 MX MX
10. Orbits, Cycles, and the Alternating Groups MX MX MX MX MX
30
11. Cosets and the Theorem of Lagrange
MX 34 MX MX MX MX
12. Direct Products and Finitely Generated Abelian Groups
M X 37 M X M X M X M X M X
13. Plane Isometries 42
M X
III. Homomorphisms and Factor Groups M X M X M X
14. Homomorphisms 44
15. Factor Groups 49 M X
16. Factor-Group Computations and Simple Groups M X M X M X M X 53
17. Group Action on a Set 58MX MX MX MX
18. Applications of G-Sets to Counting 61 X
M M
X MX M
X
IV. Rings and Fields M X M X
19. Rings and Fields
MX 63 MX
20. Integral Domains 68 M X
21. Fermat’s and Euler’s Theorems 72 M X M X M X
22. The Field of Quotients of an Integral Domain
M X 74 M X M X M X M X M X M X
23. Rings of Polynomials
M X 76 M X
24. Factorizationof Polynomials overa Field 79 X
M M
X X
M M
X M
X
25. Noncommutative Examples 85 MX
26. Ordered Rings and Fields 87 M X M X M X
V. Ideals and Factor Rings M X M X M X
27. Homomorphisms and Factor Rings MX MX MX 89
28. Prime and Maximal Ideals
M
X 94 M
X MX
,29. Gröbner Basesfor Ideals
MX M
X M
X 99
, VI. Extension Fields M X
30. Introduction to Extension Fields MX MX MX 103
31. Vector Spaces 107 M X
32. Algebraic Extensions 111 M X
33. GeometricConstructions 115 X
M
34. Finite Fields 116 M X
VII. Advanced Group Theory MX MX
35. IsomorphismTheorems 117 X
M
36. Series of Groups 119
MX MX
37. Sylow Theorems 122 MX
38. Applications of the Sylow Theory M X M X M X M X 124
39. Free Abelian Groups 128
M X M X
40. Free Groups 130
MX
41. Group Presentations 133 M X
VIII. Groups in Topology M X M X
42. Simplicial Complexes and Homology Groups 136 M X M X M X M X
43. Computations of Homology Groups 138 MX MX MX
44. More Homology Computations and Applications
MX 140 MX MX MX
45. Homological Algebra 144 M
X
IX. Factorization
46. Unique Factorization Domains 148 M X M X
47. Euclidean Domains 151 M X
48. Gaussian Integers and Multiplicative Norms M X M X M X M X 154
X. Automorphisms and Galois Theory M X M X M X
49. Automorphisms of Fields 159 MX MX
50. The Isomorphism Extension Theorem
M X M X M X 164
51. Splitting Fields 165 M X
52. SeparableExtensions 167 X
M
53. TotallyInseparable Extensions M
X 171 MX
54. Galois Theory 173 M X
55. IllustrationsofGalois Theory 176 X
M X
M X
M
56. CyclotomicExtensions 183 X
M
57. Insolvability of the Quintic 185 MX M X M X
APPENDIX Matrix Algebra MXM X MX M X 187
iv