100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Case

Case econometrie

Rating
-
Sold
2
Pages
19
Grade
7-8
Uploaded on
07-01-2025
Written in
2024/2025

Deze documenten bevatten alle essentiële informatie voor de case Econometrie . Ze omvatten zowel de output die tijdens het examen mag worden gebruikt als alle bijbehorende input. Daarnaast wordt een heldere uitleg gegeven over het verkrijgen van de resultaten, zodat alles duidelijk en begrijpelijk is.

Show more Read less
Institution
Course










Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
January 7, 2025
Number of pages
19
Written in
2024/2025
Type
Case
Professor(s)
Andres algaba en nabil bouamara
Grade
7-8

Subjects

Content preview

Case econometrie
Economische Literatuur

1. Rosen, S. (1974): Hedonic Prices and Implicit Markets: Product
Differentiation in Pure Competition
o Belangrijkheid: De grondlegger van de hedonische
prijsmethode. Deze paper beschrijft hoe woningkenmerken
(bijv. grootte, locatie) van invloed zijn op prijzen.
o Toepassing: Gebruik variabelen zoals lotSize, bedrooms,
bathrooms, en age als belangrijke kenmerken voor de
woningprijs.
2. Goodman, A. C., & Thibodeau, T. G. (1998): Housing market
segmentation
o Belangrijkheid: Bekijkt het belang van locatie (bijv. buurt,
nabijheid van voorzieningen) en hoe die segmentatie
woningprijzen beïnvloedt.
o Toepassing: Variabelen zoals pctCollege (percentage
bewoners met een collegeopleiding) en landValue zijn mogelijk
belangrijke controlevariabelen.
3. Gyourko, J., & Tracy, J. (1991): The Structure of Local Public
Finance and the Quality of Life
o Belangrijkheid: Onderzoekt de invloed van lokale publieke
goederen (bijv. scholen, infrastructuur) op woningprijzen.
o Toepassing: Locatie-gerelateerde variabelen zoals landValue
of dummies voor regio kunnen hierbij relevant zijn.
4. Cho, S. H., Clark, C. D., Park, W. M., & Kim, S. G. (2009):
Spatial and temporal variation in the housing market values of lot
size and open space
o Belangrijkheid: Benadrukt het belang van perceelgrootte
(lotSize) en open ruimte voor de waardering van woningen.
o Toepassing: Gebruik lotSize als een verklarende variabele,
mogelijk in interactie met locatie-gerelateerde kenmerken.



Mogelijke interactietermen

Met de variabelen in jouw model zijn er verschillende interessante
interacties die je kunt overwegen:

 landValue * livingArea: Mogelijk hebben grotere huizen meer waarde
in dure buurten.
 age * bathrooms: Oudere huizen kunnen meer waard zijn als ze meer
badkamers hebben.
 rooms * heating: De verwarmingsmethode kan belangrijker zijn in
huizen met meer kamers.

,  newConstruction * livingArea:
Nieuwbouw met grotere
woonoppervlakte kan een hogere waarde hebben.




m1 <- c(
+ mean(sampled_data$log_price, na.rm = TRUE),
+ mean(sampled_data$lotSize, na.rm = TRUE),
+ mean(sampled_data$age, na.rm = TRUE),
+ mean(sampled_data$landValue, na.rm = TRUE),
+ mean(sampled_data$livingArea, na.rm = TRUE),
+ mean(sampled_data$pctCollege, na.rm = TRUE),
+ mean(sampled_data$bedrooms, na.rm = TRUE),
+ mean(sampled_data$fireplaces, na.rm = TRUE),
+ mean(sampled_data$bathrooms, na.rm = TRUE),
+ mean(sampled_data$rooms, na.rm = TRUE),
+
+ # Categorische variabelen: percentage berekenen (bijv. percentage
"Ja"/"1")
+ mean(as.numeric(sampled_data$heating == "hot air"), na.rm =
TRUE),
+ mean(as.numeric(sampled_data$fuel == "gas"), na.rm = TRUE),
+ mean(as.numeric(sampled_data$sewer == "public/commercial"),
na.rm = TRUE),
+ mean(as.numeric(sampled_data$waterfront == "Yes"), na.rm =
TRUE),
+ mean(as.numeric(sampled_data$newConstruction == "Yes"), na.rm =
TRUE),
+ mean(as.numeric(sampled_data$centralAir == "Yes"), na.rm = TRUE)
+)
>
> m2 <- c(median(sampled_data$log_price),
median(sampled_data$lotSize), median(sampled_data$age),
median(sampled_data$landValue), median(sampled_data$livingArea),
median(sampled_data$pctCollege), median(sampled_data$bedrooms),
median(sampled_data$fireplaces), median(sampled_data$bathrooms),
median(sampled_data$rooms), median(as.numeric(sampled_data$heating
== "hot air"), na.rm = TRUE), median(as.numeric(sampled_data$fuel ==
"gas"), na.rm = TRUE), median(as.numeric(sampled_data$sewer ==
"public/coomercial"), na.rm = TRUE),
median(as.numeric(sampled_data$waterfront == "Yes"), na.rm = TRUE),
median(as.numeric(sampled_data$newConstruction == "Yes"), na.rm =
TRUE), median(as.numeric(sampled_data$centralAir == "Yes"), na.rm =
TRUE))
> m3 <- c(min(sampled_data$log_price), min(sampled_data$lotSize),
min(sampled_data$age), min(sampled_data$landValue),
min(sampled_data$livingArea), min(sampled_data$pctCollege),
min(sampled_data$bedrooms), min(sampled_data$fireplaces),

, min(sampled_data$bathrooms), min(sampled_data$rooms),
min(as.numeric(sampled_data$heating == "hot air"), na.rm = TRUE),
min(as.numeric(sampled_data$fuel == "gas"), na.rm = TRUE),
min(as.numeric(sampled_data$sewer == "public/commercial"), na.rm =
TRUE), min(as.numeric(sampled_data$waterfront == "Yes"), na.rm =
TRUE), min(as.numeric(sampled_data$newConstruction == "Yes"), na.rm
= TRUE), min(as.numeric(sampled_data$centralAir == "Yes"), na.rm =
TRUE))
> m4 <- c(max(sampled_data$log_price), max(sampled_data$lotSize),
max(sampled_data$age), max(sampled_data$landValue),
max(sampled_data$livingArea), max(sampled_data$pctCollege),
max(sampled_data$bedrooms), max(sampled_data$fireplaces),
max(sampled_data$bathrooms), max(sampled_data$rooms),
max(as.numeric(sampled_data$heating == "hot air"), na.rm = TRUE),
max(as.numeric(sampled_data$fuel == "gas"), na.rm = TRUE),
max(as.numeric(sampled_data$sewer == "public/commercial"), na.rm =
TRUE), max(as.numeric(sampled_data$waterfront == "Yes"), na.rm =
TRUE), max(as.numeric(sampled_data$newConstruction == "Yes"), na.rm
= TRUE), max(as.numeric(sampled_data$centralAir), na.rm = TRUE))
> m5 <- c(sd(sampled_data$log_price), sd(sampled_data$lotSize),
sd(sampled_data$age), sd(sampled_data$landValue),
sd(sampled_data$livingArea), sd(sampled_data$pctCollege),
sd(sampled_data$bedrooms), sd(sampled_data$fireplaces),
sd(sampled_data$bathrooms), sd(sampled_data$rooms),
sd(as.numeric(sampled_data$heating == "hot air"), na.rm = TRUE),
sd(as.numeric(sampled_data$fuel == "gas"), na.rm = TRUE),
sd(as.numeric(sampled_data$sewer == "public/commercial"), na.rm =
TRUE), sd(as.numeric(sampled_data$waterfront == "Yes"), na.rm =
TRUE), sd(as.numeric(sampled_data$newConstruction == "Yes"), na.rm =
TRUE), sd(as.numeric(sampled_data$centralAir == "Yes"), na.rm = TRUE))
> databeschrijving <- rbind(m1, m2, m3, m4, m5)
> rownames(databeschrijving) <- c('Gemiddelde', 'Mediaan', 'Minimum',
'Maximum', 'Standaardafwijking')
> colnames(databeschrijving) <- c("log_prijs", "perceelgrootte", "age",
"landValue", "livingArea", "pctCollege", "bedrooms", "fireplaces",
"bathrooms", "rooms", "heating", "fuel", "sewer", "waterfront",
"newConstruction", "centralAir")
> print(databeschrijving)
$10.75
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
maximilienvanofferen

Get to know the seller

Seller avatar
maximilienvanofferen Vrije Universiteit Brussel
Follow You need to be logged in order to follow users or courses
Sold
2
Member since
1 year
Number of followers
0
Documents
2
Last sold
10 months ago

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions