100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Zusammenfassung Algorithmen und Berechnungskomplexität1-Präsenzzettel2-Algo1

Rating
-
Sold
-
Pages
10
Uploaded on
31-12-2024
Written in
2024/2025

Dieses Dokument enthält die Lösungen zum 2. Präsenzblatt des Moduls Algorithmen und Berechnungskomplexität 1 sowie zusätzliche Mitschriften zur besseren Verständlichkeit.

Institution
Course









Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
December 31, 2024
Number of pages
10
Written in
2024/2025
Type
Summary

Subjects

Content preview

Algorithmen und Berechnungshomplexität
Präsenzblatt 2
21
Aufgabe ,




begeben sei die folgende Rekursionsvorschrift TIN IN mit :




falls
[cn-1)
, n =1
T(m) =




+ 3ni
falls na


Ziel ist es nun , eine
geschlossene Form TCns für diese
Rekursionsvorschrift zu finden und per
vollständige Induktion zu beweisen .

Betrachtet man die ersten Werte :
TG) =
3

T(2) TH) + 3 2 3 + 6
= .
= =
9
T(3) T(2) + 3 3 g + 9 18
= . = =




T(4) +(3) + 3 4 18 + 12 38
= .
=
=

, Differenzen TCn) -TCn-1) In
Die nahe =


legen ,


dass Tens die Summe einer arithmetischen Folget

T(n) 3 + 3 =
.
2+ 3 3 +... + 3n
1




Dies entspricht der Summe :


T(n) = 3h =
3 .

hin
+)
_
3n(n)
2
k 1
=




Die Behauptung kann per vollständiger Induktion bewiesen werden :




Induktionsanfang
Fürn =
+ 1)
311(1 3
12 2 3
,


T(1) = = = =




Induktionsannahme
Es gelte die
geschlossene Rekussionsvorschrift
für ein beliebiges n21 :




3n(n + 1)
T(n) =

2
$3.63
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
elijah1888

Get to know the seller

Seller avatar
elijah1888 Rheinische Friedrich-Wilhelms-Universität Bonn
Follow You need to be logged in order to follow users or courses
Sold
0
Member since
1 year
Number of followers
0
Documents
6
Last sold
-

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can immediately select a different document that better matches what you need.

Pay how you prefer, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card or EFT and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions