100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

samenvatting wiskunde

Rating
-
Sold
-
Pages
29
Uploaded on
27-12-2024
Written in
2024/2025

Het is een uitgebreide samenvatting van de theorie van de cursus aangevuld met theorie uit de powerpointslides muv van het hoofdstuk limieten. De samenvatting is geschreven in volgorde waarin de hoofdstukken behandeld zijn tijdens de hoorcolleges.

Show more Read less
Institution
Course










Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
December 27, 2024
Number of pages
29
Written in
2024/2025
Type
Summary

Subjects

Content preview

Hoofdstuk 3: Vergelijkingen
3.2. Lineaire vergelijking
 Lineaire vergelijking:
=vergelijking waarbij de onbekende voorkomt in de eerste graad
 Vorm: ax + b = 0
−b
 Één oplossing: x 1=
a
 Algemene regels:
 Zowel bij linker als rechterlid mag het zelfde getal worden
opgeteld/afgetrokken worden
 Zowel bij linkerlid als rechterlid mag met hetzelfde getal worden
vermenigvuldigd of door hetzelfde getal gedeeld, uitgezonderd 0!
 Het getal wijzigt van teken bij wisselen van lid bij optelling of
aftrekking en de bewerking verandert bij vermenigvuldiging en
deling
 Indien het antwoord strijdig is voor elke 𝑥∈ℝ, dan wordt de
oplossingsverzameling gezien als ledig en genoteerd als volgt: 𝑉=∅
 indien het antwoord geldig is voor elke 𝑥∈ℝ, dan wordt de
oplossingsverzameling genoteerd als volgt: 𝑉=ℝ




3.3. De vierkantsvergelijking of kwadratische
vergelijking
 vierkantsvergelijking/ kwadratische vergelijking:
=vergelijking waarbij de term met de hoogste graad van de tweede graad
is
 vorm: ax² + bx + c = 0
 discriminant: D = b² - 4ac

Discriminant # oplossingen Oplossing(en)
D>0 2 oplossingen −b+ √ D
V={ ,
2a
−b−√ D
}
2a

D=0 1 dubbele oplossing −b
V={ }
2a

D<0 Geen oplossingen V=∅

 basisregel:
 √ x 2 = |x|
x kan dus zowel positief als negatief zijn

,  Som- en product regel:
 D > 0 en x 1 ≠ x 2
−b
 Som: = x 1+ x2
a
c
 Product: = x 1∗x 2
a

 Ontbinden in factoren:

ax² + bx + c (x + x 1 ¿ (x + x 2 ¿
ax² - bx - c of ax² + bx (x - x 1 ¿ (x + x 2 ¿
-c
ax² - bx + c (x - x 1 ¿ (x - x 2 ¿

 Merkwaardige producten:

(a + b)² a² + 2ab + b²
(a – b)² a² - 2ab + b²
(a + b)² (a – b)² a² - b²
(a + b)³ a³ + 3a²b + 3ab² + b³
(a – b)³ a³ - 3a²b + 3ab² - b³
(a + b)(a² - 2ab + a³ + b³
b²)
(a – b)(a² + 2ab – a³ - b³
b²)
(a + b + c)² a² + b² + c² + 2ab +
2bc + 2ac




3.4. Bikwadratische vergelijking
 Bikwadratische vergelijking:
 Vorm: a x 4 +b x 2 +c of a x 6 +b x 3+ c
 Herleiden tot vierkantsvergelijking door substitutie: t = x²



3.5. Hogere-graadsvergelijkingen:
 Hogere-graadsvergelijking:
 Vorm V(x) = 0 met V(x) veelterm van graad 3 of hoger
 Linkerlid ontbinden in factoren
 Regel van Horner:
 Verkorte wijze van euclidische staartdeling
 Algemene methode: mogelijkst restterm
 Volgens criterium deelbaarheid: geen restterm
 Functie van hogere graad: T(x)
 Deler: N(x) = x – a
 Quotiënt veelterm: Q(x)
 Restterm: R(x)

,  Noteren: T(x) = (x – a) * Q(x) + R(x)
 Indien restterm nul is, is a een nulpunt van de functie




3.6. Rationale vergelijkingen
 Rationale vergelijking:
T 1 (x ) T 2 ( x )
 Vorm: =
N 1 (x) N 2 ( x)
 Bestaansvoorwaarde: N 2 ( x ) ≠ 0
 Wegwerken noemers zodaning dat we hogere-graadsvergelijking
bekomen




3.7. Irrationale vergelijkingen
 Irrationale vergelijking:
=vergelijking waarbij de onbekende onder een wortelteken staat
 Wegwerken door bede leden tot een bepaalde macht te verheffen
 Bij evenmachtswortel: bestaansvoorwaarde dat alles onder te wortel
groter dan of gelijk aan 0 moet zijn
 √ n n
a=B { A=B als n oneven en A=B n en A ≥ 0 als n even
 Soms kwadrateringsvoorwaarde: alles wat gelijk is aan een
vierkantswortel moet positief zijn




3.8. Eigenschappen ongelijkheden in één
onbekende
 Eigenschap 1:
=worden beide leden van een ongelijkheid met eenzelfde positief getal
vermenigvuldigd of gedeeld wordt een ongelijkheid in de zelfde zin
bekomen
 Eigenschap 2:
=worden beide leden van ongelijkheid met eenzelfde negatief getal
vermenigvuldigd wordt een ongelijkheid in tegengestelde zin bekomen
 Eigenschap 3:
=wordt in beide leden van een ongelijkheid eenzelfde getal opgeteld of
afgetrokken, dan wordt een ongelijkheid in zelfde zin bekomen
 Bijzondere gevallen:

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
vertentencaitlin Hogeschool Gent
Follow You need to be logged in order to follow users or courses
Sold
10
Member since
1 year
Number of followers
0
Documents
13
Last sold
3 days ago

5.0

2 reviews

5
2
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions