100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary statistics - part 2

Rating
-
Sold
-
Pages
24
Uploaded on
21-12-2024
Written in
2020/2021

This a summary of part 2 of the course statistics. Here you can find all lecture notes and important information, with multiple images to make it easier to understand the notes.

Institution
Course










Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
December 21, 2024
Number of pages
24
Written in
2020/2021
Type
Summary

Subjects

Content preview

SUMMARY STATISTICS PART 2
Exam 2

LECTURE 9
-Association interval & ordinal variables

Association measures




The smallest rho we can observe is -1 en the biggest +1 so -1 < r, rs, tau > +1
What is covariance?
Two graphs: grades they gave to movie and graph for their age. What
is the relation? If one goes up, the other goes down (grade for movie is
above average, the age is beneath
average, mirrored in that sense)
Score on Y, age on X → they covary
The graph says something about the
direction of association → negative (line
goes down)



Now: covariance + correlation with example 2
Three lectures
A; average = 7, standard deviation = 3
B; average = 6, standard deviation = 3
C; average = 6, standard deviation = 2
A comparing with B
A higher average, but sd is the same → vary identically, they covary fully; the grades
correlate maximum
Now A with C
Not the same average and not the same sd so covariance of C is smaller; they covary less
than A/B; grades correlate, but not maximum.

Covariance
With A/C, determine (x-, y-). In other words, average of A and average of C = 7 ; 6
X deviation = x – x-
Dx = -5, 0, 1, 1, 3
S2x = (∑dx)2 / (n-1) = variance of X
Covariance is similar but instead of dx * dx we’ll have ∑dxdy / (n-1)
So you also have to determine dy (y-y-) = -3, 1, -1, 1, 2

,So ∑dxdy = -5 x -3 + 0 x 1 + 1 x -1 + 1 x 1 + 3 x 2
= 21
Then the covariance is 21 / (n-1) = 21/4 = 5,25
So the covariance is kind of a ‘combined’
variance (can be positive or negative and gives
an indication for correlation → negative or
positive association but depends on the scale
you use = scale-sensitive
Therefore, covariance → correlation
R = covariance / sxsy (Standard deviation)
For example above: 5, x 2 = 0,875 (correlation coefficient, 0 = no correlation)
R2 = 0,77 (77% linearly explained)
R = not scale sensitive so you can compare different variables
R = coefficient of linear association (standardized covariance). -1 < r < 1
R = standardized regression coefficient b in case of simple regression (one independent
variable)
R2 = proportion variation in y linearly explained by x
Covariance is not an association measure (Scale sensitive) but we do use it to determine
correlation
Example; r = -0,5
• Negative correlation
• A 1.0 sx increase in x association with a 0,5sy decrease in y
• R2 = 0,25 (25% y-variation linearly explained by x = medium linear association)

Eta vs. r
Eta = more general
Eta2 = proportion variation y explained by x
Eta2 ≥ r2
(Because r2 is linearly explained (so less explained))
Advantage eta
• Variable x; every measurement level
• More general association
Disadvantage
• Less specific. With r, there is a direction
• Eta y on x is not the same as eta x on y (not symmetrical, as is the case with r)

Does the correlation make sense?
Sometimes it is high without making sense. Therefore, base it on existing theories!
Till now: pearson r

R vs. rank correlation, if
• 1 or both variable ordinal measurement level
• Increasing or decreasing, but curved
Advantage = more general useable
Disadvantage = less specific
Rank correlation measures; spearmans rs & Kendall’s tau

First: rank scores

, In our example, x-bar has 2 points on the third
score so 2x 3.5! And the last one 5. Do the same for
y-bar and you’ll have the rank scores!
First: determine covariance = 1,81 (∑dxdy / (n-1))
Then: determine s2x (rank) = ∑(x-x-)2/(n-1) and
s2y (rank) = ∑(y-y-) / (n-1)
Rs = covariance / √(s2x) * √(s2y)

Kendall’s tau (τ)
Consider pairs of points: pair of points is called
concordant; 1 point in pair has both a higher x and
a higher y
In example number of concordant pairs, k+ = 7
And number of discordant pairs k- = 1 (x-value is larger than point, and y not, or the
other way around)
K+ = upward arrow and k- = downward arrow
Neutral pairs (same x-value or same y-value) = 2
Tau-a = proportion of concordant – discordant pairs / number of pairs
7- = 0,6
Tau-b is used in SPSS (neutral pairs is partly included) and tau-c can also be calculated
Association is less → could be that scores are more spread around the line
SPSS:
Analyze → correlate → bivariate (2 variables)
Tick: pearson, Kendall’s tau-b, Spearman
Select the 2 variables
Test of significance → OK

In output of SPSS with correlation between A&C
Pearson correlation = r = 0,875 and p = 0,026
Spearman’s rho = rs = 0,763 and p = 0,067
Kendall’s tau-b = τ = 0,667 and p = 0,059
R is largest, but with rs and τ p is larger so…
• R is most extreme due to outlier and significant
• Values rs and τ smaller and not significant
• P for rs and τ almost similar
How do we obtain p?
3 correlation tests (statistically significance)
Testing H0: p(rho) = 0 = Pearson rho
T = r / (1-r2) * √(n-2)
Testing H0: ps = 0 Spearman rho
T = rs / (1-rs2) * √(n-2)
Testing H0: τ = 0 Kendall’s tau
Z = |K+ - K-| - 1 / (√(n(n-1)(2n+5)/18)

Partial correlation
Example 3: rjump, height = 0,454. Do we need to include a third variable such as BMI? =
Partial correlation = rxy.w = how big is rjump, height if you eliminate the influence of BMI?
1. Regression jumph (jumping height) on BMI: influence of BMI is removed from e’s
(error jump)
$6.63
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
Kim2001
4.0
(1)

Also available in package deal

Get to know the seller

Seller avatar
Kim2001 Universiteit Utrecht
Follow You need to be logged in order to follow users or courses
Sold
4
Member since
4 year
Number of followers
3
Documents
23
Last sold
2 year ago

4.0

1 reviews

5
0
4
1
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions