## Other

# Grand Canyon University:PSY 520 Topic 2 Exercise,Chapter 5 and 8;Verified Answers(Graded A)

PSY 520 Topic 2 Exercise 5.11 Scores on the Wechsler Adult Intelligence Scale (WAIS) approximate a normal curve with a mean of 100 and a standard deviation of 15. What proportion of IQ scores are 5. 15 An investigator polls common cold sufferers, asking them to estimate the number of hours of physical discomfort caused by their most recent colds. Assume that their estimates approximate a normal curve with a mean of 83 hours and a standard deviation of 20 hours. 5.18 The body mass index (BMI) measures body size in people by dividing weight (in pounds) by the square of height (in inches) and then multiplying by a factor of 703. A BMI less than 18.5 is deﬁned as underweight; between 18.5 to 24.9 is normal; between 25 and 29.9 is overweight; and 30 or more is obese. It is well-established that Americans have become heavier during the last half century. Assume that the positively skewed distribution of BMIs for adult American males has a mean of 28 with a standard deviation of 4. 8.10 Television stations sometimes solicit feedback volunteered by viewers about a televised event. Following a televised debate between Barack Obama and Mitt Romney in the 2012 U.S. presidential election campaign, a TV station conducted a telephone poll to determine the “winner.” Callers were given two phone numbers, one for Obama and the other for Romney, to register their opinions automatically. 8.14 The probability of a boy being born equals .50, or 1 / 2 , as does the prob-ability of a girl being born. For a randomly selected family with two children, what’s the probability of 8.16 A traditional test for extra-sensory perception (ESP) involves a set of playing cards, each of which shows a different symbol (circle, square, cross, star, or wavy lines). If C represents a correct guess and I an incorrect guess, what is the probability of 8.19 A sensor is used to monitor the performance of a nuclear reactor. The sensor accurately reﬂects the state of the reactor with a probability of .97. But with a probability of .02, it gives a false alarm (by reporting excessive radiation even though the reactor is performing normally), and with a probability of .01, it misses excessive radiation (by failing to report excessive radiation even though the reactor is performing abnormally). 8.21 Assume that the probability of breast cancer equals .01 for women in the 50–59 age group. Furthermore, if a women does have breast cancer, the probability of a true positive mammogram (correct detection of breast cancer) equals .80 and the probability of a false negative mammogram (a miss) equals .20. On the other hand, if a women does not have breast cancer, the probability of a true negative mammogram (correct nondetection) equals .90 and the probability of a false positive mammogram (a false alarm) equals .10. (Hint: Use a frequency analysis to answer questions. To facilitate checking your answers with those in the book, begin with a total of 1,000 women, then branch into the number of women who do or do not have breast cancer, and ﬁnally, under each of these numbers, branch into the number of women with positive and negative mammograms.) (a) What is the probability that a randomly selected woman will have a positive mammogram? (b) What is the probability of having breast cancer, given a positive mammogram? (c) What is the probability of not having breast cancer, given a negative mammogram?