100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4,6 TrustPilot
logo-home
Tentamen (uitwerkingen)

Solution Manual for Calculus: Early Transcendentals Single Variable 12th Edition . By: Howard Anton | Latest Edition

Beoordeling
-
Verkocht
-
Pagina's
825
Cijfer
A+
Geüpload op
21-11-2024
Geschreven in
2024/2025

Solution Manual for Calculus: Early Transcendentals Single Variable 12th Edition . By: Howard Anton | Latest Edition

Instelling
Calculus
Vak
Calculus











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Calculus
Vak
Calculus

Documentinformatie

Geüpload op
21 november 2024
Aantal pagina's
825
Geschreven in
2024/2025
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

SOLUTION MANUAL FOR

Calculus: Early Transcendentals Single Variable

AUTHOR: Howard Anton



12TH Edition

, Chapter 1
Functions

Exercise Set 1.1
1. (A) −2.9, −2.0, 2.35, 2.9 (B) None (C) Y = 0
(D) −1.75 ≤ X ≤ 2.15 (E) Ymax = 2.8 At X = −2.6; Ymin = −2.2 At X = 1.2

2. (A) X = −1, 4 (B) None (C) Y = −1
(D) X = 0, 3, 5 (E) Ymax = 9 At X = 6; Ymin = −2 At X = 0

3. (A) Yes (B) Yes
(C) No (Vertical Line Test Fails) (D) No (Vertical Line Test Fails)

4. (A) The Natural Domain Of F Is X ∗ =− 1, And For G It Is The Set Of All X. −1,
Whenever XF (X) = G(X), But They Have Different Domains.
(b) The Domain Of F Is The Set Of All X ≥ 0; The Domain Of G Is The Same.

5. (A) Around 1943 (B) 1960; 4200
(c) No; You Need The Year’s Population (D) War; Marketing Techniques
(E) News Of Health Risk; Social Pressure, Antismoking Campaigns, Increased Taxation

6. (A) Around 1983 (B) 1966
(C) The Former (D) No, It Appears To Be Levelling
Out

7. (A) 1999, $34,400 (B) 1985, $37,000
(C) Second Year; Graph Has A Larger (Negative) Slope
43.2 − 37.8 5.4
8. (A) In Thousands, Approximately = Per Yr, Or $900/Yr
6 6
(b) The Median Income During 1993 Increased From $37.8k To $38k (K For ’Kilodollars’; All
figures Approximate). During 1996 It Increased From $40k To $42k, And During 1999 It
Decreased Slightly From $43.2k To $43.1k. Thus The Average Rate Of Change Measured On
January 1 Was (40 - 37.8)/3 For The first Three-Yr Period And (43.2 - 40)/3 For The Second-
Year Period, And Hence The Median Income As Measured On January 1 Increased More
Rapidly In The Second Three-Year Period. Measured On December 31, However, The Numbers
Are (42 - 38)/3 And (43.1
- 42)/3, And The Former Is The Greater Number. Thus The Answer To The Question Depends
On Where In The Year The Median Income Is Measured.
(C) 1993

9. (A) F (0) = 3(0)2 −2 = −2; F (2) = 3(2)2 −2 = 10; F (−2) = 3(−2)2 −2 = 10; F (3) = 3(3)2 −2 = 25;
√ √
F ( 2) = 3( 2)2 − 2 = 4; F (3t) = 3(3t)2 − 2 = 27t2 − 2
√ √
(B) F (0) = 2(0) = 0; F (2) = 2(2) = 4; F (−2) = 2(−2) = −4; F (3) = 2(3) = 6; F ( 2) = 2 2;
F (3t) = 1/3t For T > 1 And F (3t) = 6t For T ≤ 1.
3+1 −1 + 1 Π+
1
10. (A) G(3) = = 2; G(−1) = = 0; G(Π) = −1.1 + 1 −0.1 1
G(−1.1) = = = ;
;
3−1 −1 − Π−1 −1.1 − 1 −2.1 21
2 T2 − 1 + 1 T2
1
G(T − 1)√ = = √
(B) G(3) = 3 +T21 −=12; 1 T2=−3;
− G(−1) 2 G(Π) = Π + 1; G(−1.1) = 3; G(T2 − 1) = 3 If T2 < 2 And

G(T2 − 1) = T2 − 1 + 1 = |T| If T2 ≥ 2.

1

,2 Chapter 1

√ √
11. (A) X = 3 (B) X ≤ − 3 Or X ≥ 3
(c) X2 − 2x + 5 = 0 Has No Real Solutions So X2 − 2x + 5 Is Always Positive Or Always Negative. If
X = 0, Then X2 − 2x + 5 = 5 > 0; Domain: (−∞, +∞).
(D) X ∗= 0 (E) Sin X ∗= 1, So X = (2n +2 1 )Π, N = 0, ±1, ±2,...

12. (A) X ∗= −57
(b) X − 3x2 Must Be Nonnegative; Y = X − 3x2 Is A Parabola That Crosses The X-Axis At X = 0, 1
3 1 3
And
X2 −Opens Downward, Thus 0 ≤ X ≤
(c) > 0, So X2 − 4 > 0 X − > 0, X > 4; X2 − < 0 X− < 0, Thus
4
X−4 And 4 Thus Or 4 And 4
−2 < X < 2
(d) X ∗= −1 (E) Cos X ≤ 1 < 2, 2 − Cos X > 0, All X

13. (A) X ≤ 3 (B) −2 ≤ X ≤ 2 (C) X ≥ 0 (D) All X (E) All X

14. (A) X ≥ 3 (B) − 3 ≤ X ≤ 3
(C) X ≥ 0 (D) X ∗= 0 (E) X ≥ 0
2
2 2

15. (A) Breaks Could Be Caused By War, Pestilence, flood, Earthquakes, For Example.
(B) C Decreases For Eight Hours, Takes A Jump Upwards, And Then Repeats.

16. (A) Yes, If The Thermometer Is Not Near A Window Or Door Or Other Source Of Sudden
TemperatureChange.
(B) No; The Number Is Always An Integer, So The Changes Are In Movements (Jumps) Of At
LeastOne Unit.

17. h 18. T




t t



19. (A) X = 2, 4 (B) None (C) X ≤ 2; 4 ≤ X (D) Ymin = −1; No Maximum Value

20. (A) X=9 (B) None (C) X ≥ 25 (D) Ymin = 1; No Maximum Value

21. The Cosine Of Θ Is (L − H)/L (Side Adjacent Over Hypotenuse), So H = L(1 − Cos Θ).

22. The Sine Of Θ/2 Is (L/2)/10 (Side Opposite Over Hypotenuse), So That L = 20 Sin(Θ/2).

23. (A) If X < 0, Then| |X =− X So F (X) = − X + 3x + 1 = 2x + 1. If X ≥ 0, Then| X| = X So
F (X) = X + 3x + 1 = 4x + 1;
2x + 1, X < 0
F (X) =
4x + 1, X ≥ 0

(B) If X < 0, Then |X| = −X And |X − 1| = 1 − X So G(X) = −X +1 − X = 1 − 2x. If 0 ≤ X < 1, Then
|X| = X And |X − 1| = 1 − X So G(X) = X +1 − X = 1. If X ≥ 1, Then |X| = X And |X − 1| =
X − 1So G(X) = X + X − 1 = 2x − 1;
1 − 2x, X<0
G(X) = 1, 0≤X<1
2
X − 1, X≥1

, Exercise Set 1.1 3


24. (A) If X < 5/2, Then |2x − 5| = 5 − 2x So F (X) = 3 + (5 − 2x) = 8 − 2x. If X ≥ 5/2, Then
|2x − 5| = 2x − 5 So F (X) = 3 + (2x − 5) = 2x − 2;
8 − 2x, X < 5/2
F (X) =
2x − 2, X ≥ 5/2
(B) If X < −1, Then |X − 2| = 2 − X And |X + 1| = −X − 1 So G(X) = 3(2 − X) − (−X − 1) = 7 −
2x. If −1 ≤ X < 2, Then |X − 2| = 2 − X And |X + 1| = X +1 So G(X) = 3(2 − X) − (X + 1) =
5 − 4x. If X ≥ 2, Then |X − 2| = X − 2 And |X + 1| = X + 1 So G(X) = 3(X − 2) − (X + 1) =
2x − 7;
7 − 2x, X < −1
G(X) = 5 − 4x, −1 ≤ X < 2
2x − 7, X≥2


25. (A) V = (8 − 2x)(15 − 2x)X 100
(B) 0 ≤ X ≤ 4
(C) 0 ≤ V ≤ 91
(D) As X Increases, V Increases And Then Decreases; The
Maximum Value Could Be Approximated By Zooming In
On The Graph.
0 4
0


26. (A) V = (6 − 2x)2x 20
(B) 0 < X < 3
(C) 0 < V < 16
(D) A X Increases, V Increases And Then Decreases; The
Maximum Value Occurs Somewhere On 0 < X < 3,
And Can Be Approximated By Zooming With A
Graphing Calculator. 0 3
0


27. (A) The Side Adjacent To The Building 28. (A) X = 3000 Tan Θ
Has Length X, So L = X + 2y. (b) Θ ∗= Nπ + Π/2 For Any Integer N,
(B) A = Xy = 1000, So L = X + −∞ < N < ∞
2000/X. (c) 3000 Ft
(C) All X = 0 6000
120




20 80 0 6
80 0
(D) L ≈ 89.44 Ft

500
29. (A) V = 500 = Πr2h So H = . Then 7
Πr2
500
C = (0.02)(2)Πr2 + (0.01)2πrh = 0.04πr2 + 0.02πr
Πr2
10
= 0.04πr2 + ; Cmin ≈ 4.39 Cents At R ≈ 3.4 Cm,
r
H ≈ 13.8 Cm
1.5 6
4

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
Kylaperfect West Virginia State University
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
518
Lid sinds
2 jaar
Aantal volgers
193
Documenten
498
Laatst verkocht
23 uur geleden

On this page you will get all documents you need in your career Excellence. (Exams, Notes,Summary,Case,Essay and many more documents). All the best in you study. email me if you can not find the document you are looking for and i will assist you in every way possible ,Thanks in advance.

3.7

44 beoordelingen

5
23
4
4
3
5
2
4
1
8

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen