100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4,6 TrustPilot
logo-home
Tentamen (uitwerkingen)

Solution Manual for Mathematics For Physical Science And Engineering : Symbolic Computing Applications In Maple And Mathematica 1st Edition (Frank E. Harris, 2025) All Chapters

Beoordeling
-
Verkocht
-
Pagina's
411
Cijfer
A+
Geüpload op
20-11-2024
Geschreven in
2024/2025

Solution Manual for Mathematics For Physical Science And Engineering : Symbolic Computing Applications In Maple And Mathematica 1st Edition (Frank E. Harris, 2025) All Chapters

Instelling
Mathematics For Physical Science And Engineering
Vak
Mathematics For Physical Science And Engineering











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Mathematics For Physical Science And Engineering
Vak
Mathematics For Physical Science And Engineering

Documentinformatie

Geüpload op
20 november 2024
Aantal pagina's
411
Geschreven in
2024/2025
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

Mathematics For
Physical Science
And Engineering
Symbolic Computing Applications In Maple And Mathematica
Frank E. Harris




Instructor’s
Manual

, Mathematics For Physical Science And Engineering:

Symbolic Computing Applications In Maple And Mathematica




Instructor’s Manual




Frank E. Harris




Contents

0 Introduction 1

,1 Computers, Science, And Engineering 3
1.1 Computing: Historical Note ................................................................................................ 3
1.2 Basics Of Symbolic Computing .......................................................................................... 3
1.3 Symbolic Computation Programs .................................................................................... 8
1.4 Procedures ................................................................................................................................. 10
1.5 Graphs And Tables ............................................................................................................... 12
1.6 Summary: Symbolic Computing..................................................................................... 15

2 Infinite Series 16
2.1 Definition Of Series .............................................................................................................. 16
2.2 Tests For Convergence ........................................................................................................ 18
2.3 Alternating Series ................................................................................................................. 20
2.4 Operations On Series ........................................................................................................... 21
2.5 Series Of Functions................................................................................................................ 22
2.6 Binomial Theorem ................................................................................................................ 26
2.7 Some Important Series....................................................................................................... 29
2.8 Some Applications Of Series ........................................................................................... 29
2.9 Bernoulli Numbers................................................................................................................ 30
2.10 Asymptotic Series ................................................................................................................. 32
2.11 Euler-Maclaurin Formula .................................................................................................. 32

3 Complex Numbers And Functions 35
3.1 Introduction .............................................................................................................................. 35
3.2 Functions In The Complex Domain ............................................................................. 36
3.3 The Complex Plane .............................................................................................................. 38
3.4 Circular And Hyperbolic Functions ............................................................................. 40
3.5 Multiple-Valued Functions ............................................................................................... 43

4 Vectors And Matrices 47
4.1 Basics Of Vector Algebra.................................................................................................... 47
4.2 Dot Product............................................................................................................................... 50
4.3 Symbolic Computing, Vectors ........................................................................................ 51

Ii Contents


4.4 Matrices .............................................................................................................................................. 54
4.5 Symbolic Computing, Matrices .............................................................................................. 57
4.6 Systems Of Linear Equations .................................................................................................. 61
4.7 Determinants .................................................................................................................................... 63
4.8 Applications Of Determinants................................................................................................. 64

5 Matrix Transformations 70
5.1 Vectors In Rotated Systems..................................................................................................... 70
5.2 Vectors Under Coordinate Reflections ............................................................................... 72
5.3 Transforming Matrix Equations ............................................................................................ 72
5.4 Gram-Schmidt Orthogonalization ......................................................................................... 73
5.5 Matrix Eigenvalue Problems ................................................................................................... 74
5.6 Hermitian Eigenvalue Problems ............................................................................................ 75

, 5.7 Matrix Diagonalization ............................................................................................................... 75
5.8 Matrix Invariants........................................................................................................................... 77

6 Multidimensional Problems 79
6.1 Partial Differentiation ................................................................................................................. 79
6.2 Extrema And Saddle Points..................................................................................................... 82
6.3 Curvilinear Coordinate Systems ........................................................................................... 83
6.4 Multiple Integrals .......................................................................................................................... 85
6.5 Line And Surface Integrals ....................................................................................................... 88
6.6 Rearrangement Of Double Series .......................................................................................... 90
6.7 Dirac Delta Function ................................................................................................................... 91

7 Vector Analysis 93
7.1 Vector Algebra................................................................................................................................. 93
7.2 Vector Differential Operators .................................................................................................. 99
7.3 Vector Differential Operators: Further Properties ................................................... 103
7.4 Integral Theorems ...................................................................................................................... 106
7.5 Potential Theory ......................................................................................................................... 108
7.6 Vectors In Curvilinear Coordinates .................................................................................. 111

8 Tensor Analysis 119
8.1 Cartesian Tensors ...................................................................................................................... 119
8.2 Pseudotensors And Dual Tensors...................................................................................... 124
8.3 Noncartesian Tensors .............................................................................................................. 125
8.4 Symbolic Computation ............................................................................................................. 128

9 Gamma Function 130
9.1 Definition And Properties ...................................................................................................... 130
9.2 Digamma And Polygamma Functions ............................................................................. 132
9.3 Stirling’s Formula ....................................................................................................................... 135
9.4 Beta Function ............................................................................................................................... 136
9.5 Error Function.............................................................................................................................. 140
9.6 Exponential Integral ................................................................................................................. 142

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
Kylaperfect West Virginia State University
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
518
Lid sinds
2 jaar
Aantal volgers
193
Documenten
498
Laatst verkocht
1 dag geleden

On this page you will get all documents you need in your career Excellence. (Exams, Notes,Summary,Case,Essay and many more documents). All the best in you study. email me if you can not find the document you are looking for and i will assist you in every way possible ,Thanks in advance.

3.7

44 beoordelingen

5
23
4
4
3
5
2
4
1
8

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen