100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4,6 TrustPilot
logo-home
Answers

Groepsopdrachten en antwoorden (incompleet)

Rating
-
Sold
2
Pages
11
Uploaded on
26-02-2020
Written in
2018/2019

Antwoorden van groepsopdrachten van Matrix Algebra. Let op! Deze verzameling is incompleet; alleen week 1-5.

Institution
Course









Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Study
Course

Document information

Uploaded on
February 26, 2020
Number of pages
11
Written in
2018/2019
Type
Answers
Person
Unknown

Subjects

Content preview

1 Groepsopdrachten
1.1 Week 1
Exercise 1 (Exercise 1). Los de volgende uitdrukking op naar de vector v in
termen van de vectoren a en b:

x + 2a − b = 3(x + a) − 2(2a − b)

.


x + 2a − b = 3(x + a) − 2(2a − b)
x = 3(x + a) − 2(2a − b) − 2a + b
x = 3x + 3a − 2(2a − b) − 2a + b
−2x = 3a − 2(2a − b) − 2a + b
−2x = −3a + 3b
3 3
x= a− b
2 2

Exercise 2 (Exercise 2). Bewijs dat
1 1
u·v= ||u + v||2 − ||u − v||2
4 4
voor alle vectoren u en v in Rn .


1 1 1 1
||u + v||2 − ||u − v||2 = ((u + v) · (u + v)) − ((u − v) · (u − v))
4 4 4 4
1 1
= ((u · u) + 2(u · v) + (v · v)) − ((u · u) − 2(u · v) + (v · v))
4 4
1 1 1 1 1 1
= (u · u) + (u · v) + (v · v) − (u · u) + (u · v) − (v · v)
4 2 4 4 2 4
1 1
= (u · v) + (u · v)
2 2
=u·v

Exercise 3 (Exercise 3). Beschouw de vectoren u en v in Rn , waarbij u 6= 0.
(a) Bewijs dat proju (v) loodrecht staat op v − proju (v).
(b) Gebruik het voorgaande en de stelling van Pythagoras om te bewijzen dat
||proju (v)|| ≤ ||v||.
(c) Bewijs dat de ongelijkheid ||proju (v)|| ≤ ||v|| equivalent is aan de
Cauchy-Schwarz Inequality.



1

, (a)
u · v
 u · v 
proju (v) · (v − proju (v)) = u· v− u
u · u u · u
u·v  u·v u · v
= u·v− u· u
u·u u·u u·u
(u · v)2  u · v 2
= − u·u
u·u u·u
(u · v)2 (u · v)2
= − u·u
u·u (u · u)2
(u · v)2 (u · v)2
= − =0
u·u u·u
And thus are proju (v) and v − proju (v) orthogonal.
(b)
||v||2 = ||proju (v)||2 + ||v − proju (v)||2
||v||2 − ||v − proju (v)||2 = ||proju (v)||2
≥0

Thus there holds that ||v||2 ≥ ||proju (v)||2 and therefore, because lengths
are always nonnegative ||v|| ≥ ||proju (v)||
(c) Cauchy-Schwarz: |u · v| ≤ ||u|| ||v||
||proju (v)|| ≤ ||v|| ⇔
u · v
u ≤ ||v|| ⇔
u·u
u·v
||u|| ≤ ||v|| ⇔
u·u
|u · v|
||u|| ≤ ||v|| ⇒
||u||2
|u · v| ≤ ||u|| ||v||

Exercise 4 (Exercise 4). Los het volgende stelsel van vergelijkingen op:

x1 + x2 + x4 = 0
x2 + x3 + x4 = 0
x2 + x3 − x4 = 0

     
1 1 0 1 0 1 0 −1 0 0 1 0 −1 0 0
 0 1 1 1 0 → 0 1 1 1 0 → 0 1 1 0 0 
0 1 1 −1 0 0 0 0 −2 0 0 0 0 1 0
x1 =t
x2 = −t
x3 =t
x4 =0

2
$4.95
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached


Document also available in package deal

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
marjavdwind Erasmus Universiteit Rotterdam
Follow You need to be logged in order to follow users or courses
Sold
120
Member since
5 year
Number of followers
87
Documents
185
Last sold
2 months ago
Boekverslagen Econometrie @EUR

Ik ben Marja en heb econometrie aan de Erasmus Universiteit Rotterdam gestudeerd. Inmiddels ben ik klaar met de opleiding en upload ik vooral nog boekverslagen. Ik zit namelijk al meer dan 6 jaar op een leeskring waar we recente Nederlandstalige literatuur lezen. Ik probeer boekverslagen te maken van boeken die net nieuw zijn en dus nog weinig verslagen hebben.

4.1

14 reviews

5
9
4
1
3
2
2
1
1
1

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can immediately select a different document that better matches what you need.

Pay how you prefer, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card or EFT and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions