100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.6 TrustPilot
logo-home
Exam (elaborations)

Solution Manual for Linear Algebra and Optimization for Machine Learning 1st Edition by Charu Aggarwal, ISBN: 9783030403430, All 11 Chapters Covered, Verified

Rating
-
Sold
-
Pages
208
Grade
A+
Uploaded on
11-11-2024
Written in
2024/2025

Solution Manual for Linear Algebra and Optimization for Machine Learning 1st Edition by Charu Aggarwal, ISBN: 9783030403430, All 11 Chapters Covered, Verified Latest Edition Solution Manual for Linear Algebra and Optimization for Machine Learning 1st Edition by Charu Aggarwal, ISBN: 9783030403430, All 11 Chapters Covered, Verified Latest Edition Test bank and solution manual pdf free download Test bank and solution manual pdf Test bank and solution manual pdf download Test bank and solution manual free download Test Bank solutions Test Bank Nursing Test Bank PDF Test bank questions and answers

Show more Read less
Institution
Linear Algebra & Optimization For Machine Learning
Course
Linear Algebra & Optimization for Machine Learning











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Linear Algebra & Optimization for Machine Learning
Course
Linear Algebra & Optimization for Machine Learning

Document information

Uploaded on
November 11, 2024
Number of pages
208
Written in
2024/2025
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Content preview

SOLUTION MANUAL
Linear Algebra and Optimization for Machine
Learning
1st Edition by Charu Aggarwal. Chapters 1 – 11




vii

,Contents


1 Linear Algebra and Optimization: An Introduction
J A J A J A J A J A 1


2 Linear Transformations and Linear Systems
J A J A J A J A 17


3 Diagonalizable Matrices and Eigenvectors J A J A J A 35


4 Optimization Basics: A Machine Learning View
JA JA JA JA JA 47


5 Optimization Challenges and Advanced Solutions
J A J A J A J A 57


6 Lagrangian Relaxation and Duality
J A J A J A 63


7 Singular Value Decomposition
J A J A 71


8 Matrix Factorization
J A 81


9 The Linear Algebra of Similarity
J A J A J A J A 89


10 The Linear Algebra of Graphs
J A J A J A J A 95


11 Optimization in Computational Graphs
J A J A J A 101




viii

,Chapter 1 J A




Linear Algebra and Optimization: An Introduction
JA JA JA JA JA




1. For any two vectors x and y, which are each of length a, show that (
J A J A J A J A J A J A J A J A J A J A J A J A J A J A J A




i) x − y is orthogonal to x + y, and (ii) the dot product of x − 3y and x + 3y
J A JA JA J A JA JA JA JA JA J A JA J A JA JA JA JA JA JA J A JA JA JA




is negative.
J A J A




(i) The first is simply
JA · x− x y y using the distributive property of matrix
JA JA JA J A
JA J JA A J A J A JA JA JA JA JA JA JA




multiplication. The ·dot product of a vector with itself is its squared length JA JA JA JA JA JA JA JA JA JA JA JA




. Since both vectors are of the same length, it follows that the result is 0. (ii
JA JA JA JA JA JA JA JA JA JA JA JA JA JA JA JA




) In the second case, one can use a similar argument to show that the resul
JA JA JA JA JA JA JA JA JA JA JA JA JA JA JA




t is a2 − 9a2, which is negative.
JA JA JA JA JA JA JA




2. Consider a situation in which you have three matrices A, B, and C, of size J A J A J A JA J A J A J A J A JA JA J A JA JA J A




s 10 × 2, 2 × 10, and 10 × 10, respectively.
J A JA JA JA JA JA JA JA JA JA JA




(a) Suppose you had to compute the matrix product ABC. From an efficiency JA JA JA JA JA JA JA JA JA JA JA




per-
JA




spective, would it computationally make more sense to compute (AB)C or w
JA JA JA JA JA JA JA JA JA JA JA JA




ould it make more sense to compute A(BC)? JA JA JA JA JA JA JA




(b) If you had to compute the matrix product CAB, would it make more sense
JA JA JA JA JA JA JA JA JA JA JA JA JA




JA to compute (CA)B or C(AB)?
JA J A J A J A




The main point is to keep the size of the intermediate matrix as small a
JA JA JA JA JA JA JA JA JA JA JA JA JA JA




s possible in order to reduce both computational and space requiremen
JA J A JA JA JA JA JA JA JA JA




ts. In the case of ABC, it makes sense to compute BC first. In the case of
JA JA JA JA JA JA JA JA JA JA JA JA JA JA JA JA JA




CAB it makes sense to compute CA first. This type of associativity prop
JA JA JA JA JA JA JA JA JA JA JA JA




erty is used frequently in machine learning in order to reduce computati
JA JA JA JA JA JA JA JA JA JA JA




onal requirements. JA




3. Show that if a matrix A satisfies— A = J A J A J A J A J A J A J A J A




A , then all the diagonal elements of t
T
JA J A JA JA JA JA JA JA




he matrix are 0. JA JA JA




Note that A + AT = 0. However, this matrix also contains twice the diago
JA JA JA JA JA JA JA JA JA JA JA JA JA JA




nal elements of A on its diagonal. Therefore, the diagonal elements of
JA JA JA JA JA JA JA JA JA JA JA JA




A must be 0. JA JA JA




4. Show that if we have a matrix satisfying— A = JA JA JA JA JA JA JA JA JA




1

, AT , then for any column vector x,
JA JA JA JA JA JA JA JA




we have x Ax = 0.
JA J A
T
JA JA JA




Note that the transpose of the scalar xT Ax remains unchanged. Therefore
J A J A J A J A J A J A J A JA J A J A J A




, we have
J A J A




xT Ax = (xT Ax)T = xT AT x = −x T Ax. Therefore, we have 2xT Ax = 0.
JA JA JA JA J A JA JA JA JA JA JA J A J A J A J A JA JA JA




2

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
PrimeStudyArchive Teachme2-tutor
View profile
Follow You need to be logged in order to follow users or courses
Sold
171
Member since
2 year
Number of followers
44
Documents
2641
Last sold
1 week ago
PrimeStudyArchive – Global Academic Resources

PrimeStudyArchive is a global academic resource hub dedicated to delivering high-quality, original, and well-structured study materials for students and professionals worldwide. Our collection includes carefully curated test banks, solution manuals, revision guides, and exam-focused resources across nursing, business, accounting, economics, and health sciences. Every document is developed with clarity, accuracy, and practical exam relevance in mind. We focus on reliability, academic integrity, and ease of understanding—helping learners prepare efficiently, revise confidently, and perform at their best. PrimeStudyArchive serves students across multiple institutions and educational systems, offering resources designed to meet international academic standards. Whether you are preparing for exams, reinforcing coursework, or seeking structured revision materials, PrimeStudyArchive provides dependable content you can trust.

Read more Read less
3.6

67 reviews

5
28
4
14
3
8
2
6
1
11

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions