100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
College aantekeningen

Power Relations and Circuit Measurements notes

Beoordeling
-
Verkocht
-
Pagina's
19
Geüpload op
10-11-2024
Geschreven in
2012/2013

Transform your understanding of Power Relations and Circuit Measurements with this indispensable set of notes, crafted specifically for electrical and computer engineering students. Dive into key concepts like circuit analysis, Ohm’s Law, Kirchhoff’s Laws, Thevenin’s and Norton’s theorems, and AC/DC circuit dynamics—all presented in an easy-to-follow format that breaks down complex ideas into manageable steps. Packed with clear explanations, illustrative examples, and expert problem-solving strategies, these notes are designed to make your study sessions more productive and engaging. Whether you're aiming for top exam scores, tackling challenging assignments, or seeking to solidify your teaching materials, these documents are your ticket to mastering Power Relations and Circuit Measurements Elevate your learning experience and boost your confidence with these comprehensive and expertly organized notes. Start excelling today—now available on Stuvia!

Meer zien Lees minder










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
10 november 2024
Aantal pagina's
19
Geschreven in
2012/2013
Type
College aantekeningen
Docent(en)
Onbekend
Bevat
Alle colleges

Voorbeeld van de inhoud

Chapter 7 Power Relations and Circuit Measurements


7.1 Instantaneous and Average Power
Resistor
 If a voltage v = Vmcos(t + ) is i
p
applied to a resistor R (Figure
7.1.1a), the current through the + t
v R
– - i
resistor is i = I m cos (ωt+θ) , where v
Vm (a) (b)
I m= Figure 7.1.1
R , and the instantaneous
power dissipated in the resistor at any time t is:
VmIm
=
2
[ 1+cos 2 ( ωt +θ ) ]
p = vi = VmImcos2(t + ) (7.1.1)
 The instantaneous power varies at twice the supply frequency and is never negative,
since the resistor does not return power to the supply (Figure 7.1.1b).
 Over a cycle, the cosine term averages to zero, so the average power dissipated
over a cycle is:
V m Im Vm Im
P= = =V rms I rms
2 √2 √ 2 (7.1.2)


Inductor
 If a voltage v = Vmcos(t +
i p v
) is applied across an i

inductor L (Figure 7.1.2a), +
v L t
the current through the – -
inductor is i = Imcos(t + 
– 90) = Imsin(t +  ),
Vm (a) Figure 7.1.2 (b)
I m=
where ωL , and the
instantaneous power delivered to the inductor at any time t is:
V m Im
= sin 2 ( ωt +θ )
p = vi = VmImcos(t + )sin(t + ) 2 (7.1.3)
 The average power is zero and that as much power flows in one direction as in the
opposite direction (Figure 7.1.2b).


7-1/19

,Capacitor
 If a voltage v = Vmcos(t +
) is applied across a v
i p
i
capacitor C (Figure
7.1.3a), the current through + t
v C -
the capacitor is i = Imcos(t –
+  + 90) = -Imsin(t + ),

where
I m=ωCV m , and the (a) (b)
Figure 7.1.3
instantaneous power delivered to the capacitor at any time t is:
V m Im
=− sin 2 ( ωt +θ )
p = vi = -VmImcos(t + )sin(t + ) 2 (7.1.4)
 The average power is zero and as much power flows in one direction as in the
opposite direction (Figure 7.1.3b).

Concept When v and i are sinusoidal functions of time of frequency , with
v being a voltage drop in the direction of i, the instantaneous power p = vi is
pulsating at a frequency 2. If v is in phase with i, as in the case of R, p  0
and represents power dissipated. If v and i are in phase quadrature, as in the
case of L and C, p is purely alternating, of zero average, since no power is
dissipated. In this case, when v and i have the same sign, p > 0 and
represents energy being stored in the energy-storage element. When v and i
have opposite signs, p < 0 and represents previously stored energy being
returned to the rest of the circuit.


General Case
 In the general case, the instantaneous power delivered to any given circuit N through
a specified pair of terminals of N is:
p = vi (7.1.5)
where i is the instantaneous current entering the terminals in the direction of the
voltage drop v (Figure 7.1.4a).
 If v = Vmcos(t + v) and i = Imcos(t + i) (Figure 7.1.4b):
p = VmImcos(t + v)cos(t + i) (7.1.6)


 Resolve v into two components: i

+
v N
7-2/19


- v (a)
p VQ
V

, V Q




t
i v I VP
- i
i
v
a component vP in phase with i and a component vQ in phase quadrature with
(c)i.
(b) Figure 7.1.4
 The component of v in phase with i has a phase angle I and a magnitude Vmcos(v -
i), whereas the component in phase quadrature with i has a phase angle (I + 90)
and a magnitude Vmsin(v - i) (Figure 7.1.4c). Thus:
vP = [Vmcos(v - i)]cos(t + i)] (7.1.7)
vQ = Vmsin(v - i)cos(t + i + 90) = –Vmsin(v – i)sin(t + i) (7.1.8)
 Multiplying each of the two components of v by i:
V m Im
= cos ( θv −θi ) [ 1+cos 2 ( ωt +θi ) ]
vPi = VmImcos(v – i)cos2(t + i) 2
= P[1 + cos2(t + i)] (7.1.9)
Vm Im
P= cos ( θv −θi )=V rms I rms cos ( θv −θi )
where, 2 (7.1.10)
and vQi = –VmImsin(v - i)cos(t + i)sin(t + i)
V m Im V m Im
=− sin ( θv −θi ) sin 2 ( ωt +θ i ) = sin ( θ v −θi ) cos [ 2 ( ωt +θi ) + 90∘ ]
2 2
= Qcos[2(t + i) + 90] (7.1.11)
V m Im
Q= sin ( θ v −θi ) =V rms I rms sin (θ v−θ i )
where, 2 (7.1.12)
 P is the real, or average, power. It appears in Equation 7.1.9 both as the average of
vPi, which is the power dissipated in the resistive elements of the circuit, and as the
magnitude of the alternating component of vPi.
 Q is the reactive power and is the power associated with the energy that is
alternately stored and returned to the supply by the inductive and capacitive
elements of the circuit. From Equation 7.1.12, Q is the magnitude of vQi, which is
purely alternating.

 For a resistor,
θv =θi , so Q = 0 and P = V I , in accordance with Equation 7.1.2.
rms rms



For an inductor,
θv −θi =90∘ , so Q = V I and P = 0. For a capacitor,
rms rms


θv −θi =−90∘ , so Q = –V I and P = 0. Thus, Q is positive for an inductive
rms rms

reactance and is negative for a capacitive reactance.
 Whereas the unit of P is the watt (W), the unit of Q is the volt-ampere reactive, VAR).


Example 7.1.1 Real and Reactive Power
Consider a voltage vSRC = 100cos(1000t + 30)
I 30 


7-3/19 +
10030 V j 40 



Figure 7.1.5
$5.49
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
derrickwesonga

Ook beschikbaar in voordeelbundel

Thumbnail
Voordeelbundel
Comprehensive Electric Circuits Notes package
-
8 2024
$ 43.92 Meer info

Maak kennis met de verkoper

Seller avatar
derrickwesonga University of South Africa (Unisa)
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
0
Lid sinds
1 jaar
Aantal volgers
0
Documenten
12
Laatst verkocht
-

0.0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen