W. DH: Toegepaste thermodynamica
Bundel 1: Inleiding + basisbegrippen (Hoofdstuk 1-4)
Inleiding toegepaste thermodynamica: SLIDE 1-7
Thermodynamica = wetenschap van energie-uitwisselingen
Inleidende begrippen: SLIDE 8 – 118
Thermodynamische basisbegrippen
Systeem & omgeving: slide 9
Warmte: slide 10
Warmte afgifte: daling intrinsieke energie
Warmte opname: toename intrinsieke energie
Warmte ≠ Temperatuur
!! Geen eigenschap van het systeem
Arbeid: slide 11
Levering arbeid DOOR systeem: daling intrinsieke energie
Levering arbeid AAN systeem: toename intrinsieke energie
!! Geen eigenschap van het systeem
Tekenconventies & eenheden: slide 12
Gesloten & Open systeem: slide 13
Vervormbare/rigide systeemgrenzen: slide 13
(Thermische/ Mechanisch) geïsoleerd systeem: slide 14
Druk p: slide 15
!! Een eigenschap van het systeem
Temperatuur T: slide 16
!! Een eigenschap van het systeem
Volume V: slide 17
- Specifiek volume = volume per massaeenheid
!! Een eigenschap van het systeem
Massa m & dichtheid/specifieke massa ρ: slide 18
Massadebiet ḿ : slide 19
Vermogen vs Energie: slide 20
- thermische vermogen Q́
- mechanische/elektrisch vermogen Ẃ
!! Geen eigenschap van het systeem
Ogenblikkelijk en Geïnstalleerd vermogen: slide 21
Toestand van een systeem en zijn werkfluidum
Energiewetenschappen: slide 22
= energie-transferten van en naar systemen
Werkfluidum: slide 22
= binnenin systeem
Toestand: slide 23
- Karakteristieken van het werkfluidum
Reversibel proces = geïdealiseerde TV: slide 26
= tussentoestanden definieerbaar bij toestandsveranderingen (TV)
= mogelijk om terug te zetten naar oorspronkelijk toestand zonder spoor achter te
laten (systeem en omgeving helemaal terug hersteld)
1
, Irreversibel proces: slide 27
= tussentoestanden niet definieerbaar bij toestandsveranderingen
= Enkel eindtoestanden gedefinieerd
Interne reversibiliteit: slide 29
= Enkel systeem kan terug naar oorspronkelijke toestand (bekijkt omgeving niet)
Extensieve/intensieve grootheden: slide 30
Extensief: waarde hangt af van de hoeveelheid massa in het systeem bv. volume
Intensief: onafhankelijk van de hoeveelheid massa bv. druk
Reversibele arbeid: slide 31
= arbeid geen eigenschap van systeem dus geen arbeid in 1 en 2 maar wel om van
1 naar 2 te gaan. Arbeid = transfergrootheid.
Thermodynamische cycli – kringprocessen: slide 33
= Systeem waar eindtoestand = begintoestand na TV (wel arbeidstoevoer en afvoer)
Eerste hoofdwet thermodynamica
Kringproces of cyclus: slide 35
- Gesloten systeem = ∑Q + ∑W = 0 , intrinsieke energie systeem is onveranderd
- Stromingsprocessen = ∑Q́ + ∑Ẃ = 0
Gesloten systeem: slide 36
- zonder stroming, massa behouden
- ∆12U ≡ U2 – U1 = Q12 + W12
- dU = δQ + Q + δQ + W
Open systeem: slide 37
- Controlevolume: een soort net waar massa doorheen kan
Eerste hoofdwet thermodynamica: slide 39
- E(t + ∆t) – E(t) = Q + W u2 – u1 = Q + W
- Q en W steeds positief: als warmte en arbeid aan systeem wordt toegevoegd dan
+ waarde geeft het systeem warmte of arbeid af dan negatieve waarde (slide 47)
- behoud van energie: energie gaat niet verloren of ontstaat niet uit het niets
Verdringingsarbeid: slide 41
= arbeid die nodig is om de massa in het controlevolume te drukken
- arbeidsvermogen nodig
Om volume met massa in cv te duwen = ḿ 1p1v1
Om volume met massa uit cv te duwen = ḿ 2p2v2
- Totaal arbeidsvermogen toegevoegd aan het systeem
Ẃ ≡ Ẃ l+ ḿ 1p1v1 - ḿ 2p2v2
1Ste HW thermo in open systeem met verdringingsarbeid: Slide 44
- gebruik stationaire afgeleiden: Ẃ l = technische arbeid
- Enthalpie = h: slide 44
c 22 c 21
( ) (
Q́+ Ẃ l=ḿ h2+ + g z 2 −ḿ h1 + + g z 1
2 2 )
- Technische arbeid Wl: slide 45
- VEREENVOUDIGING formule (slide 46): termen << (h2-h1) dan
Q W l m h2 h1
W l m h2 h1
Arbeidsmachine (pomp, tribune)
Q m h2 h1
Warmtewisselaar (ketel, condensor)
Voorbeeld luchtcompressor: slide 47-49
2