100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Samenvatting voeding en vertering

Rating
-
Sold
-
Pages
21
Uploaded on
04-11-2024
Written in
2023/2024

Uitgebreide en volledige samenvatting van het vak voeding en vertering - Afstandsonderwijs Vives Torhout

Institution
Course










Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
November 4, 2024
Number of pages
21
Written in
2023/2024
Type
Summary

Subjects

Content preview

Samenvatting voeding en vertering

1. Autotrofe voeding

1.1 Autotroof versus heterotroof

- Autotroof

- Heterotroof

- Foto-autotroof

- Chemo-heterotroof

1.2 Fotosynthese (algemeen)

1.2.1 Voorwaarden voor fotosynthese

1.2.1.1 Noodzaak van licht

Glucose gevormd door fotosynthese wordt door het blad tijdelijk opgeslaan onder de vorm van zetmeel.

Proefje: blad enkele dagen afdekken en dan met lugol (zetmeelindicator) aantonen dat er geen zetmeelsynthese heeft

plaatsgevonden in afgedekte blad.

Fotosynthese = zetmeelsynthese

1.2.1.2 Noodzaak van chlorofyl (bladgroen)

Bladeren waar chlorofyl ontbreekt, produceren geen zetmeel.

Fotosynthese = bladgroenwerking.

1.2.1.3 Noodzaak van koolstofdioxide (CO²)

Fotosynthese = koolstofdioxideassimilatie

Waterdamp (H²O) noodzakelijk.

Eindproduct = glucose

Dus: Reductie van CO² en H²O tot glucose (en O²)

1.2.2 Globale reactievergelijking van de fotosynthese

Fotosynthese is het proces waarbij de energie van zonlicht gebruikt wordt om glucose (energierijk) te vormen uit koolstofdioxide

(energiearm) en water.

Koolstofdioxide + water  glucose (+ zuurstofgas)




Bij de celademhaling verloopt dit proces tegenovergesteld:




1.3 Absorptie van licht door chlorofyl

1.3.1 Zonlicht als energievorm

- Zichtbaar licht: golflengte van 400 tot 700 nm

- Verschillende golflengtes = verschillende kleuren

- Licht bestaat uit fototonen: lichtdeeltjes met elektromagnetische kracht: energie

- Hoe hoger de golflengten hoe lager de energie

1.3.2 De rol van chlorofyl

1.3.2.1 Chlorofyl, een pigment in het inwendig membraan van de chloroplast




1

, - Chloroplasten = bladgroenkorrels zijn organellen die talrijk voorkomen in bladcellen. Ze hebben een dubbele

membraan.
o Inwendig membraan:
 Thylakoïden: instulpingen
 Grana: stapeltjes van afgeplatte

membraanzakjes die als muntstukken

op elkaar liggen
 In de membranen van de thylakoïden

en grana: chlorofylmoleculen :

bladgroenmoleculen

- Chloroplasten voeren fotosynthesereacties uit:
o De chlorofylmoleculen vangen lichtenergie op;

die energie wordt gebruikt om glucose op te bouwen uit koolstofdioxide en water
o Syntheseproces gebeurt in het stroma

1.3.2.2 Andere bladpigmenten

- Scheiding van bladpigmenten door papierchromatografie. (= scheidingstechniek om mengsels van moleculen te

scheiden)

- Chlorofyl b (geelgroen), chlorofyl a (heldergroen), xanthofyllen (oranjegeel), carotenoïden (oranjerood)

1.3.2.3 Absorptiespectra van fotosynthetisch actieve pigmenten lichtabsorptie door chlorofylmoleculen

- Alle fotosynthetisch actieve pigmenten absorberen licht van een verschillende golflengte. Dit is het absorptiespectrum.

- Vangen lichtenergie op (fototonen)

- 2 types:
 Chlorofyllen
 Chlorofyl -a, -b, -c, -d, -e
 Carotenoïden
 Carotenen
 Xanthofyllen

- Absorptiemaxima vooral violet - blauw en rood

- Rood en blauw worden goed opgenomen door het blad en dus zie je

die kleuren niet, groen kan niet goed opgenomen worden door het

blad en wordt dus weerkaatst, daarom zien we het blad als groen

- Chlorofyl a: absorbeert blauw en rood licht

- De rest andere golflengtes: ze absorberen samen licht met groter golflentegebied, dan elk apart

1.3.2.4 Lichtabsorptie door chlorofylmoleculen

- Geabsorbeerd licht = hoeveelheid energie waardoor elektronen in chlorofylmoleculen van normaal energieniveau 

aangeslagen toestand

- Grondtoestand = elektron bevindt zich het dichtst bij de atoomkern

- Aangeslagen toestand = alle andere afstanden

- Hoe groter de afstand, hoe hoger opgeslagen energie

Fluorescentie: E komt vrij als licht

Rood en blauw licht geabsorbeerd



3 en 4 meest bij chloroplasten:

- 3: energie aan naburige chlorofylmolecule waardoor die

geëxciteerd wordt

- 4: elektronen uitgestoten waardoor de molecule een

elektronendonor wordt en worden opgevangen door

elektronenacceptor, waardoor licht wordt omgezet in

chemische energie




2

, 1.4 Verloop van het fotosyntheseproces

1.4.1 Lichtreacties van de fotosynthese

- Fotosysteem II: Fotolyse van watermoleculen
o Chlorofyl-a₂  p-680 molecule (680 nm)

- Fotosysteem I: Vorming van ATP-moleculen, fotofosforylatie
o Lichtenergie omzetten in chemische energie

o Chlorofyl-a₁  p-700 molecule (700 nm)

1.4.1.1 Fotolyse van H₂O

- Fotosysteem II

- Door lichtabsorptie komen chlorofylmoleculen in fotosysteem II in aangeslagen toestand.

- Elektronen worden uitgestoten (mechanisme 4) en er blijven positief geladen chlorofylmoleculen achter.

- Chlorofylmoleculen moeten terug neutraal worden (om opnieuw gevoelig te zijn voor lichtabsorptie)

- De verloren elektronen worden via een omweg vervangen door elektronen van een watermolecule. Dat is het moment

waarop water afgesplitst wordt en zuurstofgas wordt geproduceerd = fotolyse van H₂O.

-

- De uitgestoten elektronen van chlorofyl in fotosysteem II dienen om het elektronentekort van chlorofyl in fotosysteem I

aan te vullen.

- KORT:

LCD: lichtcapterend deel + reactiecentrum

Bij lichtenergie: elektronen losgeslaan uit pigmenteiwit (chlorofyl). Elektronen uit water opgenomen om dit op te

vullen.

Water wordt gesplitst en zuurstofgas wordt gevormd.

1.4.1.2 Fotofosforylatie

- Fotosysteem I

- De energie van de door fotosysteem II uitgestoten elektronen wordt gebruikt door een protonenpomp om protonen

actief vanuit het stroma binnen de thylakoïden te pompen. Ook de protonen ontstaan na fotolyse van H₂O blijven aan

de binnenkant van het thylakoïd. Hierdoor is de protonenconcentratie veel groter dan in het stroma 

protonengradiënt.

Om de energie van het protonengradiënt te kunnen benutten moeten we de protonen via een speciale

transportproteïne (ATPsynthasecomplex) naar het stroma migreren.

Elektronen naar NADP+ onder invloed van NADP reductase, dit katalyseert de reactie.

- Door protonenpomp: lage pH in lumen.

Concentratiegradiënt: protonenvoerend complex  vrijmaken energie

E gebruikt voor synthese ATP

Fotofosforylatie: ADP + P ⅈ  ATP
- pH = -log [H+]. [H+] is de concentratie H+ ionen in een oplossing. Hoe hoger de concentratie, hoe meer H+ionen er in
een oplossing zijn, dus hoe zuurder de oplossing is.

Transportproteïne = ATP synthase complex

-


- Overzicht lichtreacties:




3
$10.99
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
charlottedebbaut

Also available in package deal

Get to know the seller

Seller avatar
charlottedebbaut Katholieke Hogeschool VIVES
Follow You need to be logged in order to follow users or courses
Sold
0
Member since
1 year
Number of followers
0
Documents
15
Last sold
-

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions