P-LIJN: NEURORADIOLOGIE
1. BASICS OF CT AND MRI OF THE BRAIN
EXAMEN: weten wat CT en MRI is, wat is T1 en T2, wat is bot en weke delen venster
1.1 CT
• Röntgenstralen: grote buis, snel, weinig lawaai
• VOORDELEN
o Snel onderzoek (minuten)
o Hoge toegankelijkheid
o Snel beschikbaar
• NADELEN
o Ioniserende straling: kinderen, zwangere vrouwen
o Lagere resolutie van zacht weefsel
• INDICATIES
o Voornamelijk noodgevallen!
o Trauma, beroerte, bloeding...
o Botachtige pathologie
• Weke delen kernel: hoog weke delen contrast, laag botcontrast
• Bot kernel: laag weke delen contrast, hoog botcontrast
• Stroke window: groot contract maken tussen witte en grijze stof
o W: 8 HU : range
o L: 32 HU: middenste HU nummer (HU van grijze stof)
o ➔ early ischeamic stroke bij verlies van grijs-witte stof
differentiatie
• Brain window → klassiek
o W: 80 HU
o L: 40 HU
• Subdurale window
o W: 130 – 300 HU (contrast tussen scalp en smal subduraal hematoom)
o L: 50 – 100 HU (acute bloeding)
o ➔ subduraal hematoom veel beter zichtbaar
• Multiplanaire reconstructiess: axiaal – sagittaal – coronaal
• CT
o Röntgenstralen worden geabsorbeerd of gereflecteerd door de weefsel waar ze doorheen
gaan
o Hoe meer stralen door weefsels of organen → donkerder op CT → hypodens (HU < 0)
o Hoe minder stralen door weefsels of organen (meer absorptie/ reflectie) → witter op CT →
hyperdens (HU > 0)
o Dichtheid van water = 0 HU
• Fysiologische calcificaties → volledig normaal
o Pineal gland calcificaties (zeer veel voorkomend, ook bij jonge mensen)
o Choroid plexus calcificaties
o Durale calcifciaties
o Basale ganglia calcificaties → vooral bij ouderen
• Hyperdens hypodens
o Hyperdens: bv. acute bloeding
1
, o Hypodens: bv. ischemisch infarct (oedameteus: veel water)
• Multifragmentaire schedeldakfractuur → in bot kernel bekijken (3D reconstructie kan helpen om
ernst te bekijken)
o CT is superieur voor beenderige pathologie
• CT met joodcontrast
▪ Contrast verandert de densiteit van het weefsel waarin het passeert
▪ Normaal BBB → geen contrast in hersenen
• Indien wel aankleuring met contrast: metastase met tumorcellen
ontwikkelt eigen bloedvoorziening (lek van contrast in tumor)
▪ Sinus sagitalis superior: teken van contrast (normaal)
▪ Contrast: nuttig voor detectie van tumoren en metastasen
• Bij oncologische patiënt die je wil screenen op meta’s → MRI doen want
veel sensitiever dan CT met contrast (je zou veel missen met CT)
• In minder dringende setting: bijna altijd voorkeur voor MRI (enkel CT bij
contra-indicaties voor MRI/ PM/ lange wachttijd)
• CT angiografie
o = directe visualisatie van cerebrale arteriën (CT angiografie) of venen (CT venography)
o Contrast inspuiten en onderzoek timen dat contrast enkel in arteriën aanwezig is (dia 14)
▪ A. cerebri ant.
▪ Sinus sagittalis superior
▪ Sinus rectus
o Klonter in hersenbloedvaten te detecteren → grote hypodense oedeemzone (a. cerebri
media infarct)
o CT venografie: gewoon iets later scannen zodat contrast in venen zit
▪ Sinus sagittalis superior ontbreekt: cerebraal veneuze trombose
• Jonge vrouw die rookt en pil neemt met progressieve hoofdpijn
• CT perfusie
o Visualisatie van de vasculaire perfusie van het brein
o Hoofdindicatie: detectie van ischemisch infarct, differentiatie penumbra en core
▪ ➔ kan hersenweefsel nog gered worden of niet? (hulp bij therapeutische
beslissingen): beste kansen op herstel proberen bekomen
• Artefacten
o Beweging → moeilijk om fracturen en kleine subdurale hematomen te zien
o Beam hardening artefacts: bv. oorbellen patiënt, coiled aneurysma (door structuren van
hoge densiteit)
o Partieel volume: door verschillende weefseldensiteiten in eenzelfde voxel
1.2 MRI
• Kleine buis, duurt lang, veel lawaai
• Basis MRI
o Patiënt in sterk magnetisch veld → protonen gaan
zich oriënteren volgens richting magneetveld
o Magnetisatie kantelen over 90° met RF pulse:
loodrecht op extern magneetveld → zwak signaal
oppikken
o 2e pulse over 180°: sterk signaal (basis voor
generatie MRI beeld)
o 2 parameters
2
, ▪ TE = echotijd (tijd tussen 90° pulse en moment waarop we magnetisch signaal
genereren van 180° pulse)
▪ TR = repetitietijd (tijd tussen opeenvolgende spin – echo sequenties)
• Basis MRI sequenties
o T1
o T2
o FLAIR (fluid attenuation inversion recovery images)
o DWI (diffusion weighted images)
o T2* images
1.2.1 T1 EN T2 GEWOGEN BEELDEN
• T1: korte TE en TR → contrast tussen weefsel bepaald door verschil in T1 relaxatietijd
o Water = zwart
o Witte stof = wit tov cortex (witte stof bevat myeline → vet = hyperintens op T1)
• T2: lange TE en TR → contrast tussen weefsel bepaald door verschil in T2 relaxatietijd
o Water = wit - witte stof = donker tov grijze cortex
1.2.2 PROTONDENSITEITBEELD
• Sterkte van het magnetisch signaal bepaalt door de
hoeveelheid protonen
• TE en TR zo instellen dat T1 en T2 er niet toe doen
maar puur de hoeveelheid protonen
verantwoordelijk is voor beeldcontrast
1.2.3 FLAIR
• = T2 sequentie waar het signaal van vrije
watermoleculen wordt onderdrukt
• = T2 sequentie maar water is zwart
o Vrij vocht wordt onderdrukt (rest is wel
T2)
• Hoe FLAIR onderscheiden van T1 → kijken naar
cortex (grijze en witte stof) !!!!! (EXAMEN)
o FLAIR
▪ Grijze stof veel intenser dan
witte stof
o T1: omgekeerd: witte stof is bleker dan grijze stof
• → basissequentie van neuroradioloog
• Kan bv. ook coronaal (hippocampus beter zien)
1.2.4 PATHOLOGIE
• T2 en FLAIR zijn de pathologische sequenties → bijna alle pathologie is wit = hyperintens (oedeem
→ verhoogd watergehalte in vergelijking met normaal hersenweefsel)
• FLAIR is nog sensitiever dan T2
o T2 zorgt voor veel hyperintens signaal van CSV (maskeert het een beetje) → FLAIR is beter:
bijna enkel pathologische zaken zien
o Meeste pathologie is zwart (watermoleculen) op T1 MAAR enkele zaken zijn hyperintens
op T1 (makkelijke DD) !!! EXAMEN
▪ Bloed/ thrombus (subacuut geklonterd bloed)
3
1. BASICS OF CT AND MRI OF THE BRAIN
EXAMEN: weten wat CT en MRI is, wat is T1 en T2, wat is bot en weke delen venster
1.1 CT
• Röntgenstralen: grote buis, snel, weinig lawaai
• VOORDELEN
o Snel onderzoek (minuten)
o Hoge toegankelijkheid
o Snel beschikbaar
• NADELEN
o Ioniserende straling: kinderen, zwangere vrouwen
o Lagere resolutie van zacht weefsel
• INDICATIES
o Voornamelijk noodgevallen!
o Trauma, beroerte, bloeding...
o Botachtige pathologie
• Weke delen kernel: hoog weke delen contrast, laag botcontrast
• Bot kernel: laag weke delen contrast, hoog botcontrast
• Stroke window: groot contract maken tussen witte en grijze stof
o W: 8 HU : range
o L: 32 HU: middenste HU nummer (HU van grijze stof)
o ➔ early ischeamic stroke bij verlies van grijs-witte stof
differentiatie
• Brain window → klassiek
o W: 80 HU
o L: 40 HU
• Subdurale window
o W: 130 – 300 HU (contrast tussen scalp en smal subduraal hematoom)
o L: 50 – 100 HU (acute bloeding)
o ➔ subduraal hematoom veel beter zichtbaar
• Multiplanaire reconstructiess: axiaal – sagittaal – coronaal
• CT
o Röntgenstralen worden geabsorbeerd of gereflecteerd door de weefsel waar ze doorheen
gaan
o Hoe meer stralen door weefsels of organen → donkerder op CT → hypodens (HU < 0)
o Hoe minder stralen door weefsels of organen (meer absorptie/ reflectie) → witter op CT →
hyperdens (HU > 0)
o Dichtheid van water = 0 HU
• Fysiologische calcificaties → volledig normaal
o Pineal gland calcificaties (zeer veel voorkomend, ook bij jonge mensen)
o Choroid plexus calcificaties
o Durale calcifciaties
o Basale ganglia calcificaties → vooral bij ouderen
• Hyperdens hypodens
o Hyperdens: bv. acute bloeding
1
, o Hypodens: bv. ischemisch infarct (oedameteus: veel water)
• Multifragmentaire schedeldakfractuur → in bot kernel bekijken (3D reconstructie kan helpen om
ernst te bekijken)
o CT is superieur voor beenderige pathologie
• CT met joodcontrast
▪ Contrast verandert de densiteit van het weefsel waarin het passeert
▪ Normaal BBB → geen contrast in hersenen
• Indien wel aankleuring met contrast: metastase met tumorcellen
ontwikkelt eigen bloedvoorziening (lek van contrast in tumor)
▪ Sinus sagitalis superior: teken van contrast (normaal)
▪ Contrast: nuttig voor detectie van tumoren en metastasen
• Bij oncologische patiënt die je wil screenen op meta’s → MRI doen want
veel sensitiever dan CT met contrast (je zou veel missen met CT)
• In minder dringende setting: bijna altijd voorkeur voor MRI (enkel CT bij
contra-indicaties voor MRI/ PM/ lange wachttijd)
• CT angiografie
o = directe visualisatie van cerebrale arteriën (CT angiografie) of venen (CT venography)
o Contrast inspuiten en onderzoek timen dat contrast enkel in arteriën aanwezig is (dia 14)
▪ A. cerebri ant.
▪ Sinus sagittalis superior
▪ Sinus rectus
o Klonter in hersenbloedvaten te detecteren → grote hypodense oedeemzone (a. cerebri
media infarct)
o CT venografie: gewoon iets later scannen zodat contrast in venen zit
▪ Sinus sagittalis superior ontbreekt: cerebraal veneuze trombose
• Jonge vrouw die rookt en pil neemt met progressieve hoofdpijn
• CT perfusie
o Visualisatie van de vasculaire perfusie van het brein
o Hoofdindicatie: detectie van ischemisch infarct, differentiatie penumbra en core
▪ ➔ kan hersenweefsel nog gered worden of niet? (hulp bij therapeutische
beslissingen): beste kansen op herstel proberen bekomen
• Artefacten
o Beweging → moeilijk om fracturen en kleine subdurale hematomen te zien
o Beam hardening artefacts: bv. oorbellen patiënt, coiled aneurysma (door structuren van
hoge densiteit)
o Partieel volume: door verschillende weefseldensiteiten in eenzelfde voxel
1.2 MRI
• Kleine buis, duurt lang, veel lawaai
• Basis MRI
o Patiënt in sterk magnetisch veld → protonen gaan
zich oriënteren volgens richting magneetveld
o Magnetisatie kantelen over 90° met RF pulse:
loodrecht op extern magneetveld → zwak signaal
oppikken
o 2e pulse over 180°: sterk signaal (basis voor
generatie MRI beeld)
o 2 parameters
2
, ▪ TE = echotijd (tijd tussen 90° pulse en moment waarop we magnetisch signaal
genereren van 180° pulse)
▪ TR = repetitietijd (tijd tussen opeenvolgende spin – echo sequenties)
• Basis MRI sequenties
o T1
o T2
o FLAIR (fluid attenuation inversion recovery images)
o DWI (diffusion weighted images)
o T2* images
1.2.1 T1 EN T2 GEWOGEN BEELDEN
• T1: korte TE en TR → contrast tussen weefsel bepaald door verschil in T1 relaxatietijd
o Water = zwart
o Witte stof = wit tov cortex (witte stof bevat myeline → vet = hyperintens op T1)
• T2: lange TE en TR → contrast tussen weefsel bepaald door verschil in T2 relaxatietijd
o Water = wit - witte stof = donker tov grijze cortex
1.2.2 PROTONDENSITEITBEELD
• Sterkte van het magnetisch signaal bepaalt door de
hoeveelheid protonen
• TE en TR zo instellen dat T1 en T2 er niet toe doen
maar puur de hoeveelheid protonen
verantwoordelijk is voor beeldcontrast
1.2.3 FLAIR
• = T2 sequentie waar het signaal van vrije
watermoleculen wordt onderdrukt
• = T2 sequentie maar water is zwart
o Vrij vocht wordt onderdrukt (rest is wel
T2)
• Hoe FLAIR onderscheiden van T1 → kijken naar
cortex (grijze en witte stof) !!!!! (EXAMEN)
o FLAIR
▪ Grijze stof veel intenser dan
witte stof
o T1: omgekeerd: witte stof is bleker dan grijze stof
• → basissequentie van neuroradioloog
• Kan bv. ook coronaal (hippocampus beter zien)
1.2.4 PATHOLOGIE
• T2 en FLAIR zijn de pathologische sequenties → bijna alle pathologie is wit = hyperintens (oedeem
→ verhoogd watergehalte in vergelijking met normaal hersenweefsel)
• FLAIR is nog sensitiever dan T2
o T2 zorgt voor veel hyperintens signaal van CSV (maskeert het een beetje) → FLAIR is beter:
bijna enkel pathologische zaken zien
o Meeste pathologie is zwart (watermoleculen) op T1 MAAR enkele zaken zijn hyperintens
op T1 (makkelijke DD) !!! EXAMEN
▪ Bloed/ thrombus (subacuut geklonterd bloed)
3