100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.6 TrustPilot
logo-home
Other

Spiekbrief tentamen 1/2

Rating
1.0
(1)
Sold
-
Pages
1
Uploaded on
30-01-2020
Written in
2019/2020

Dit is het eerste deel van de spiekbrief. Deze spiekbrief bevat alle nodige theorie, formules en tentamenopgaven.

Institution
Course








Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Study
Course

Document information

Uploaded on
January 30, 2020
Number of pages
1
Written in
2019/2020
Type
Other
Person
Unknown

Subjects

Content preview

Reliability Exponential
− λt
Weibull
t
Gamma
β P ( A ∪B ) =P ( A )+ P ( B )
R ( t )=P(T ≥ t) R ( t )=e β t β −1 − ( )f ( t )= t γ−1 ∗α−γ∗e −tα P ( A ∪B ) =P ( A )+ P ( B )−P (
T= time to failure
F ( t )=1−R (t)
F ( t )=1−e−λt
λ ( t )= ( ) , R ( t )=e
θ θ Γ ( y)
θ

P ( A ∪B ) =P ( A )+ P ( B )−P ( A
f ( t )= λe− λt
β

() β −1 − t t P ( A ∩B )=P ( A )∗P ( B )
F ( 0 )=0 β t
f ( t )= ( ) e I( ,γ)
θ
1 α P ( A|B )=P( A ∩ B)/ P ( B )
lim F (t )=1 MTTF= , θ θ F ( t )=
λ Γ (γ )
→∞
d −d 2 1 MTTF=θΓ ( 1+ )
1
t
∫ f ( x ) g ' (x )dx=¿ ¿
f ( t )= F ( t )= R ( t )σ = 2 β f ( x ) g ( x ) −∫ g ( x ) f ( x ) dx
a
dt dt λ t
1I ( α , γ )=∫ y
γ−1 −y
t 2 ∗e dy 2 Binominaal
R(t ¿¿ u)=e− λt =u ¿ u
σ =θ ( Γ ( 1+ ) −( Γ ( 1+ ) ) )
2 2
F ( t )=∫ f ( t ' ) dt ' p ( x )= n p x (1− p)n−x E ( X )=
0 t u=
−1
ln ⁡( R)
β
Τ ( x )=( x−1)Γ ( x−1)
β
met y=
t '
0
x ()
∞ λ α n= n!
R ( t )=∫ f ( t ' ) dt '
t
R ( t|T 0 ) =R ( t )
(memoryless)
t =θ (−ln ( u ) )
u
1
β x x ! ( x−n ) !
Data collective t , t ,…, t represents the time of failure of the i unit. The sample
1 2
represents n ind. Values, thus the joint prob: f(t )*f(t )*…*f(t )
n ()
1 2 n
th




P ( a ≤T ≤b )=F ( b )−F ( Failure
a ) modes 1 1
Single censored data: all units have the same test time, test is concluded before all
n t mode=θ (1− ) β for β>1
units have failed (on the left: failures are known to occur before a certain time, on the

R ( t ) =∏ R i ( t ) β right: failures are known to be only after a certain time).
¿ R ( a ) −R ( b ) i=1 ¿ 0 for β ≤ 1
Type I: testing is terminated after a fixed time (t*)
Type II: testing is terminated after a fixed #failures (t ) r
b n
0< β <1 → DFR (Beta = Multiple censored data: testtimes differ among censored units. Censored units are
¿ ∫ f ( t ) dt λ ( t )=∑ λi (t ) shape par.) removed or gone into service at various times from the sample.
Ungrouped complete data: als n aantal failures zijn in een random sample, dan zijn
a i=1 β=1 →CFR (Theta = het aantal surviving units op tijd ti gelijk aan n-i.
R(t ¿¿ u)=u , R(t ¿¿ med)=0.5 ¿ ¿ Two parameter scale/char. life) Grouped complete data: failure times zijn vervangen door intervallen. De individuele
∞ −d β >1→ IFR
R ( t ) ¿ λe−λ(T−t ) observatie is niet beschikbaar, nk zijn het aantal units dat survived op tijdstip tk.
f ( t )= 0

MTTF=E [ T ] =∫ tf ( t ) dt dt Failure modes UGCensoredD product estimator GCensoredD product estimator
0 (0< t 0 ≤T <∞)
k
β t β −1 n+2−i F i=¿ failures ith interval
R ( t i−1 ) HJ =


∫ R(t )dtdata
¿UGComplete Dynamic models
λ ( t )= ∑
i=1 θi θ i
( ) ^
^
R t
n+1 C i=¿ removals( censors) ith
H i=¿ at risk at time t i−1
0 i i
Periodic loads
Als λ ( t ) zijn identiek: ( i )HJ n+ 1−i
R KM ( t i ) =n− =1− Rn =R n
^ =
n n Random loads nβ t β −1
R ( t i−1 ) HJ n+ 2−i
^ H i=H i−1−F i−1−C i−1

F KM ( t i )=1−R
^ ^ ( t i ) = i −k ∞ n
Constant strength k Constant stress s
−s

λ ( t ) =
n
Random stress & strength
θ n eθ−αt −(1−R ) αt ^
μ
() 1 R ( t ) =
n+ 1−i ^
R ( t ) H
'
i =H i −
Ci
, adjusted ¿ risk
n R ( t ) =∑ R Pn (t )=∑ R ( αtR=
Exponential
Dit klopt niet want n/n=1
R=1−exp ( )
μ x n=0
R=exp
μn=0 ( ) ) −n t =e
x R ( t ) =e μ x + μ y
En n (!θ )
y
=
1+ μ x /μ
β Statici HJ models
n+ 2−i i−1 HJ
X is de stress, Y is de strength (capaciteit). De kans dat de stress niet
If censoring
y rather than failure
^
(assuming that censors occur
uniformly)
x
2
Improved by Johnson
B ThreeB parameter ( Takes place at t : R P ¿ ( X ≤ x )i
=F x F i ∫ f x x dx '
( x ) = ( ')
k s groter is dan x:
i Random

[( )]fixed stress and

[( )]
x y '

F Weibull
^ HJ ( t i) =
R=1−exp strenght − R=exp − t 0 is minimumlife ¿
Met getallen oplossen δ =1 if failure occurs at t i ' : the 0 conditional prob of failure
n+1 θ −αtθ β
H
R t =R+(1−R) e
( ) x y
−(
t −t
) μ −μ 0 De kans dat de capaciteit niet groter is dan
y
y:
i
i n+1−i R (yt )=e θ
= k −μx s−μ in '
R HJ ( t i ) =1−
^ 0 ifP censoring occursat t
Normal

− ^
R (
R=Φ n+1
n+1
t )−
( )
σ
^ ( t i )x
R
R=1−Φ
σ λy( t )=
( ) ( )
β
R=Φ( β−12 2 )
t−t
y

√State-dependent
0 σ +σ
x
x

y
^
R t
Static
( Y ≤ y )=F y ( y )=∫ f yi ' (The
=¿
( i )HJreliability: kans dat de stress nietpgroter 0
y ith ) dyinterval
=1−
' given survival to t
Fi
is dan decond strength. . prob of su
t-1




^f HJ ( t i )= i +1 θ θ ln ⁡(m / m ) ^ R
systems
(
Bij0 ) =1
random
with repair
stress en constant strength:
i
H '
t i+1−t i1 ln k 1 s
th
Identical standby units time to k failure



¿
Lognormal
1
R=Φ
s ( ( ))
x m x
R=1−Φ
s y
ln
m ( ( )) (
y
R=Φ d P21y(t )2=−2
s
√ dtx y + s
x
Kolom
KolomR=
λ P
1:
2: t
k
t
f)
i’s((aantal
) +
( x
∫ x R ( t )Grouped
1 r
failure+censor)
Parallel
P
failures)
dx=F
2
i
(t )
Configuration
times
=1− x (k )

n
R
Complete
+
R(1−R
^ (
k= 1− t ) =e
i data ( t )) '(i=0
−F λt

(
i
k−1


i
∗R
( λt )i
^i!i−1, MTTF=
independent ) )
(t i+1−t i )(n+1) d P2 (t ) 0 S
Hoe standby/ switching failure sommen i Hconfiguration
^ uitwerken:
i switching failures
=2 λ P1 ( t )−(r + λ) P^2 (t )∞ n∞iKolom i=1 Standby Combined system f ( t(ti ) , t ) ni−ni +1
with
^ dt R ( t i )= d, ^λk-out-of-n t1:i )=interval
^λ HJ ( t i) = f ( t ) = 1 ( redundancy = i-1 i

MTTF MTTF= System= ∫ R ∫n ( R
t
Kolom ) P(
dt t )
2:
1 dt
(
for t )
#failures^
=−¿
Rtwo (nt F) ( t i+1−tin−
component )∗n (exp
Ri k (1−R) k i
d P3 (t )
R
^ (t ) ( t i +1−t i ) ( n+ 1−i )
n
t dt
=λ P2 ( t )
∀ t , tϵ∞[ 0 , ∞ ) : R (^t )=P
0
0 dt P( k)=
s
Kolom 3: #censorskC i
d∞ 1 ( t ) + P2 (t )∞+ P3 ( t )
P−λ4:2− ttR 1−
i
()
^ MTTF HJ =∑ i Normal plots
λ+ r + x 1 x P −λ t R (dtt i+1
Kolom N= ( #at
) total ^)= risk H i pe)n−(λ
(opt(icomponents
#components
)tijdstip λ 1−n P 1 ( tλ ) )t−λdt 2
t i ( tλ+r x2t dat ¿ ¿1+
¿) :∫ De+ ekans
^
f dt
( ei ) Kolom
x t +¿ ∫ e 1
K= working dt−¿ 2
∫ i needed i+1
I¿
2


i=1 n t−u P1 ( t )= e = het system zich = t in ' toestand

( )
1 2

F ( t )=Φ =Φ ( z )systems − 0 d0t 5:
−t adjusted n #risks
0 (t H −t )∗n
2
σ
Standby x 1−x 2 bevindt x 1−x 2 i+1P ( t )∑ i=λ P ( ti+1
2 1 ), )if−λ
i i
1 P3(t )
n
( t i− ^ MTTF ) dti=2 R 3=
ofP(k p
2 d P1 ( t ) Alle i’s definiëren: i=1 dan..,Kolom k−1 dan… s (prob
6: n −n survive )
exponential:
i t i +t i+1
s HJ =∑ The inverse function can be written as
=−¿ ∀ t , tϵ [ 0 ,^∞
MTTF= ) : P ( t )∑+ P t´ ( t ) +i
k=x P i
( t
+1
) + ,Pt´ = ( t ) =1
n−1 tP dt = tWeibull 2 λ 2 λ 1 2 i n 3 ^
R i4
ex t − e x tLoad sharing i=0system n n i −λkt 2
Kolom 7: Reliability
i=1
i −μ2 ( t )= i μplots 1 2
−1
z i=Φ [ F (t ) ] =Markov
dσP22-good
1: 1-good,
analysis x 1−
) σln σ
( t2-good
−x 2 1
[ =
x 1−x
]()t β
2
S2=∑
d k−1
P1t(´2ti )=−(λ
n R
( i k=x
Serial s configuratione
−n = ∑ i+ 1 ) k
1+ λ −of2)^ P1 ( t ) 2 1
MTTF
()
(1−e−λt )
Which is linear in t. Plot ( t i , F
2: 1-fail,^ ( t i )= λ 1−F
P ( t
) 1 x12 x 2t 2 x1 x i=0 ) (
−λt ) P θ( t ) dt
R = reliability
n
1
n
component

P3dt
3: 1-good, 2-fail
( t2-fail 1e − ed t R t ∏ ) −λR+¿ i ( t ) ( independ
) =1+ 1 2
Least-squares:

exponentially distributed:
4: 1-fail,
Time of the kth when T is Serial: R ( t ) =P 1 ( t ) 2
d P3 (st ) −¿1P1−F
Parallel: R p =
i


(
ln ln
t )λ=¿
x −x
[ ]
=β x 1−x
( t ) − λ P( t( t)) P ( t ) =e ¿
1 1
ln t−β
2
3
dt
d 2
P
lnθ
1
2 ( t )=λ 1 P1 ( ti=1
−¿¿
S ( ) =

Ri ( t ) =e− λ t (if+¿exponential)
2
P (t ) ¿

i
2




k
dt 1
Plot 2 2 P ( t ) =λ 2 P1 ( t ) −λ
P (t ) ¿ 3


Y K =∑ T i , x , x = [
P1 ( t ) + P2 2( t ) + P3 ( t )
1 2 − ( 3 λ−r ) ± √ 1
λ + 6 λr+ dt r 1]
MTTF=
1 1
, MTTF
1

f y ( t )=
i =1
λ k k−1 −λtP1 ( t ) + P2 ( t ) + P3 1( t ) + P
t e P2 ( t ) =
dR ( t )=1−P λ
lnt i ,λln ln

+ λ
−¿−λ
( ¿ ¿
1−
x
¿
4 ( tF
1
^)=1
2 x t
[
( t i ) werk doen en fandersom
λ
x
+ ¿=aangepaste
2
])
Normal
Als 1 kapot gaat moet 2 meerλ

( t ) =
x t faalintensiteit ¿
distribution



√ 2
1
π σ
e
(IFR)
−1
2
¿¿
s= n


Τ (k ) P1 ( t )=−( 3λ1 + λ 2x) P
Or 1 Weibull 2( t ) =
paper ( e −
t1i (,tF) ( t i ) ) x −x −( λ + λ ) t
^ 1
2
e 1 i=1
Lognormal plots
dt −x ∞ −1
1 1 k
1 2
P1 ( t )=e
1 2 1
12
¿¿
1 λR1 ( t )= ∫ e2 ¿
z=Φ−1 [ F ( t ) ] = ln ( t )− ln ( t med )
s
plot ( ln t i , z i ) lognormal paper or paper
s
∫ t
E [ Y K ]=
n
dt=
t n+1λ
for n≠
d
dt
1
RP ( t2)=P
( t )=λ
^
1 ( t1)P
β=
+lnP(ln
1 t2)(−λ t 1−F [
) +2PP3 2((t(tt))=e )
−λ t
+ ]
λ1 + λ−¿−
P2 ( t )= z=( 2
1
λ
¿Tλ¿−μ
√2 π σ t
1
2
2


n+1 d ln t−lnPθ( t ) λ 1+ λ2−λ +¿ )
P ( t ) =λ
Exponential P ( t
plots ) −λ σ 2 ¿¿¿
( ti , F^ ( ti ) ) dt dt 3
12 1 λ11 3


∫ =ln t MTTF= −ln λ+
− ( λ +[ 1−F )t 1 ]=ln 1 =λt F ( t )=P ( T ≤ t )=Φ( t −μ )
( t ) −¿−λ 2 2

Reviews from verified buyers

Showing all reviews
4 year ago

1.0

1 reviews

5
0
4
0
3
0
2
0
1
1
Trustworthy reviews on Stuvia

All reviews are made by real Stuvia users after verified purchases.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
AnneBannink Technische Universiteit Eindhoven
Follow You need to be logged in order to follow users or courses
Sold
14
Member since
6 year
Number of followers
13
Documents
18
Last sold
1 year ago

2.0

4 reviews

5
0
4
0
3
2
2
0
1
2

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions