100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Samenvatting - Advanced Econometrics 1 (6414M0005Y)

Beoordeling
-
Verkocht
3
Pagina's
37
Geüpload op
27-09-2024
Geschreven in
2023/2024

Extensive summary of the course Advanced Econometrics 1.

Instelling
Vak











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
27 september 2024
Aantal pagina's
37
Geschreven in
2023/2024
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Advanced Ecomometrics
Herhaling linear models
Remember the standard regression model y
=

XB + E




Conditioning
7
Conditioning is important in econometrics
2
VB what is variance today, given yesterday
Remember that an assumption of the classic linear regression model is that should be fixed therefore we
condition on

Some important formulas
·
Marginal density

f(y) =
JA(x y)dx
,
or f(x) =
(f(x y)dy ,




·
Conditional density
b(y x)f(y x)
, ,




f(yx) =
f(x) Sh(y x) by=

,





Conditional expectation

Elyx] =

Syb(y(x) dy
·
Conditional variance [y(x] E[(y ETy(x])"(x]
·
var : -




·
Law of iterated expectations E[y] Ex[Eyix [y(x]]
· :




·
Marginal variance :
(y) E[var (y(x)]
var =
(E[y(x]) + var

,Regressions and loss functions
Remember that the residuals are e =

y
-




y
7
Predictor : =
Xb Expected loss:
2
Real value :
y
=

XB + E
E[L(y y)() -




& We have different loss functions L(e) =
((y -y)
E[y(x]
2
8 :
8



Squared error .

e
y

Absolute error let :
Y =

med(y(x)
(1 x) if
E
-
e eso

8
Asymptotic absolute error ~
X e
if ezo
j =


q(y(x)
&
Step loss ·
Cite e-O
y =
mod(y(x)
The goal is to minimize the error, therefore we need an optimal predictor
to minimize the error. Every loss function has an optimal predictor.

Linear prediction




Ordinary least squares: goal again to minimize errors =
minei) mine-min -
(yiyi)



3
Y
I


XB xie ..


·)
xik
E[nX]
·


Yo · x
:
,
P =



: :
:
I :




xine
i


Yo
·
Xn2
...



Bu

OLS estimator minimizes - (yi -xib)2 =
ni =

(y XB)'(y XB)
-
-




boe-2Xy 2XX
=

+ 0




Bas (XX)"Xig - is the estimator of B

, -Y
P X(XX)"X'
n Matrix P projects Y on S(x)
:




e =

My M 1 P
and matrix M projects Y on So(x)
= -




D

I



> S(x) S
Both symmetric
y =
Xb =
Py and indempotent

Assumptions OLS
I
Fixed regressors: all elements of matrix X are fixed/non-stochastic rank (X) : :
b

2
Random disturbances Elui] : =
o




3
Homoskedasticity (disturbances have constant variance) Var (vi) z In : : =




4
No correlation between disturbances Cov (vi uj) ·
,
= o




5
Constant parameters B constant ·




6
Linear relation y XB : = +
u




uX N(0 In)
7
Normality: is normally distributed
E : -
,




X



Under these assumptions we have:
Unbiased: Variance:
E(B(X) B (XX)XEZuIX B : + =


Var(B(x) : (XX)"X 'Var(u(X)x(X(X)
· (x(x)"xX(X(X)" j(XX)" =




BLUE:
v(B(x) j(XX)" = -
any other estimator Distribution:
b(X -
N(B , (XX)")
N


Asymptotic theory
T
In asymptotic theory the assumption of normality is dropped, however we can still get the same result
by R -D




We first repeat some theories
8
i.i.d: independent and identically distributed
O

i.n.i.d: independent and not identically distributed
Modes of convergence



3
O
Converges in distribution Xn° X if im Fr(x) : -
F(x)) = o




O
Converges in probability Xn"-X plimXn X if :
or
= im PXn-X1 > = Yn **
X = > Xn
:
/


Converges almost surely Xn Xif P in /Xn-X1 Xn X
M S
O ** .


..
:



X
=
0 =




8
Converges in mean square XnXif nhmE (Xn-X)2 : =

, Law of Large Numbers
-n-gr -8


&
Weak (WLLN): in probability
&
Strong (SLLN): almost surely
e
Khintchine WLLN EXiBis id Mi ·
,
=

pe
O
Chebyshev WLLN :
[XiDiz him =
, ind

O
Markov SLLN EXi ·
is ,
indo

Central Limit Theorem

Zi
M -Wo , we



&
Lindeberg-Levy CLT EXiSiz id Mi p i 82 ·
,



inid
= =




Lindeberg-Feller CLT [Xibic hi E (Xi-mi(Xi mis)]
6 ·
, =


)

Liapounov CLT [Xi inid him (2 Ei
+
O ·
is ,




Transformation theory
If Xn X and Yn se If Xn"X and An " A

·
Xn + Yn X + e
·
AnXn AX

·
XnYn eX · An"Xn"A"X
·
Xn/Yn -
X/e




Delta method
·




·
n



~N(A n20)
(g(fn)
,
-




g(fo))d
g(n)
N(o
-
,




N(g(f)
nGe)]G(8)
Gi) Goe .




,
:
ag(t)
at


2
Instead of the normality assumption we assume that n is large and add new assumptions

Stability of X
plim ( * XX) plim (n Exixi') Mxx
= =





Orthogonality of X and u
plim (Xa) = o




&
Stability of u
plim (in'u) = and
plines" =



N


Using these assumptions we have

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
maaikekoens Universiteit van Amsterdam
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
33
Lid sinds
4 jaar
Aantal volgers
0
Documenten
9
Laatst verkocht
4 weken geleden

4.5

2 beoordelingen

5
1
4
1
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen