100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4,6 TrustPilot
logo-home
Tentamen (uitwerkingen)

A First Course on Symmetry, Special Relativity and Quantum Mechanics: The Foundations of Physics, First Edition (Instructor Solution Manual, Solutions)

Beoordeling
-
Verkocht
-
Pagina's
98
Cijfer
A+
Geüpload op
25-09-2024
Geschreven in
2024/2025

A First Course on Symmetry, Special Relativity and Quantum Mechanics: The Foundations of Physics, First Edition (Instructor Solution Manual, Solutions) A First Course on Symmetry, Special Relativity and Quantum Mechanics: The Foundations of Physics (Undergraduate Lecture Notes in Physics) 1st ed. 2024 Edition by Gabor Kunstatter (Author), Saurya Das

Meer zien Lees minder
Instelling
Symmetry, Special Relativity And Quantum Mechanics
Vak
Symmetry, Special Relativity and Quantum Mechanics











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Symmetry, Special Relativity and Quantum Mechanics
Vak
Symmetry, Special Relativity and Quantum Mechanics

Documentinformatie

Geüpload op
25 september 2024
Aantal pagina's
98
Geschreven in
2024/2025
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

Chapter 16

Solutions to Exercises

16.1 Introduction
No exercises


16.2 Symmetry and Physics

Exercise 1. Calculate the length D of roadway in Fig. 2.3 as a function
of l and a, and verify that it is minimized by the value of l given in Eq.(2.1)
above.
Solution:
Each diagonal segment on the right hand side of Fig. 2.3 has length:
s
 a 2  a − l 2
d(l) = + (16.1)
2 2

The total length of pavement D(l) as a function of l is:
s
 a 2  a − l 2
D(l) = l + 4d = l + 4 + (16.2)
2 2




496

,CHAPTER 16. SOLUTIONS TO EXERCISES 497

To find the value of lmin that minimizes the function D(l) we have to solve:

dD(l) 2(a − l)(−1)
= 1+ p
dl lmin a2 + (l − a)2
= 0 (16.3)

A bit of algebra yields:
a2
(a − lmin )2 = (16.4)
3
Since l must be less than a the relevant solution is:
 
1
lmin = a 1 − √ (16.5)
3
Plugging this into the expression for D(l) we find:
 
1
D(lmin ) = a 1 + √ (16.6)
3
which is less than the length of pavement required by building two diagonal
roads directly through the center of the square, namely:
√ √
Ddiagonals = 2 a2 + a2 = 2 2a (16.7)

A straightforward calculation verifies that

d2 D(l)
<0 (16.8)
dl2 lmin

so that lmin is indeed a minimum as required.




Exercise 2. Consider three towns, called N (for North), SW and SE,
respectively, located a distance a apart at the vertices of an equilateral tri-
angle, as shown in Fig.[2.4]. We wish to build a network of roads connecting
all three towns such that the roads (shown in blue) meet at an arbitrary
point P along the line joining the center of the triangle to the northern town
at some distance l from N . Show that the minimum total length for such a

,CHAPTER 16. SOLUTIONS TO EXERCISES 498

configuration of roads occurs when l = a/ 3, so that the least expensive way
to join the towns is to have the three segments of road meet at the center,
C. Is there symmetry breaking in this case? Explain.
Hint: Use the law of cosines to figure out the distance from P to the other
two towns SW and SE. This should give you an expression for the total
length of the three roads that join P to N , SW and SE. Finally, minimize
the total length of pavement with
√ respect to the parameter l and show that
the minimum occurs at l = a/ 3.




Figure 16.1: Three towns to be joined by shortest road.


Solution:
Consider the triangle with vertices N-P-SE. The angle at each vertex in the
equilateral triangle is 60◦ , so that the angle between the lines N-P and N-SE
is 30◦ . Applying the cosine law:

d2 (l) = l2 + a2 − 2al cos(30)

q
→ d(l) = l2 + a2 − 3al (16.9)

The total length of road D(l) is:

D(l) = 2d(l) + l

q
= 2 l2 + a2 − 3al + l (16.10)

, CHAPTER 16. SOLUTIONS TO EXERCISES 499

We want to find the value lmin of l that minimizes D(l):

dD(l) 2l − 3a
= 2 p √ +1
dl lmin 2 l2 + a2 − 3al
= 0q
√ √
2
→ 2lmin − 3a = lmin + a2 − 3al (16.11)

Squaring both sides of the above gives a quadratic equation for lmin in terms
of a whose solution is:

(3 ± 1) 3
lmin = a (16.12)
2
Since we need lmin to be less than a the physical solution is the minus sign,
so that: √
lmin = 3a (16.13)
A straightforward calculation verifies that

d2 D(l)
>0 (16.14)
dl2 lmin

so that lmin is indeed a minimum as required.




Exercise 3. Derive Equation (2.2) using the diagram in Fig. 2.5. The
distances a, b and c are given. You can use the fact that the total time Ttot
taken along Path 2 is:
p p
c21 + b2 c22 + a2
Ttot = + (16.15)
VG VS
and find the equation for c1 that minimizes Ttot . Hint: in order to solve the
resulting equation, you may need:
c1
= tan(θG )
b
c2
= tan(θS ) (16.16)
a

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
Topscorer london
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
117
Lid sinds
5 jaar
Aantal volgers
13
Documenten
454
Laatst verkocht
19 uur geleden
Top Scorer

Helping all Students fulfill their educational, career and personal goals.

4.3

24 beoordelingen

5
16
4
3
3
3
2
0
1
2

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen