100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

EMA1501 Assignment 5 (COMPLETE ANSWERS) 2024 - DUE 25 September 2024

Beoordeling
-
Verkocht
-
Pagina's
16
Cijfer
A+
Geüpload op
24-09-2024
Geschreven in
2024/2025

100% TRUSTED WORKINGS, EXPLANATIONS & SOLUTIONS

Instelling
Vak










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Vak

Documentinformatie

Geüpload op
24 september 2024
Aantal pagina's
16
Geschreven in
2024/2025
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

EMA1501 Assignment 5
(COMPLETE ANSWERS) 2024
- DUE 25 September 2024
CONTACT:

,EMA1501 Assignment 5 (COMPLETE ANSWERS) 2024 -
DUE 25 September 2024
QUESTION 1: PRE-NUMBER CONCEPTS (25) Read the
statement below and answer the questions that follow.
From birth already, children are exposed to mathematical
concepts and activities. For example, when feeding a
baby, a mother measures the formula in millilitres; during
bath times, nursery rhymes like, “One, two, three, four
five- once I caught a fish alive” can be said, etc. 1.1 With
the above statement in mind, discuss how the following
five pre-number concepts form the foundational
understanding of numbers and how these concepts
contribute to logical thinking about numbers. (5x3= 15) •
One-to-one correspondence • Comparison • Conservation
• Ordering • Subitising
Pre-number concepts are essential in helping young children build foundational understanding of
numbers and develop logical thinking about numerical relationships. These concepts emerge
through everyday activities and form the basis for more complex mathematical reasoning. Let's
explore the five pre-number concepts mentioned and their contribution to logical thinking about
numbers:

1. One-to-One Correspondence

This concept refers to the ability to match one object to one other object or number in a set. For
example, when a child counts blocks, they point to each block and say one number for each. This
concept forms the basis for counting, ensuring that each number corresponds to one and only one
object.

 Contribution to logical thinking: One-to-one correspondence helps children understand
the principle of counting accurately and enables them to recognize that the last number in
a count represents the total quantity of objects. This contributes to logical reasoning about
quantities and comparisons.

2. Comparison

Comparison involves examining two or more objects or sets to determine which is larger,
smaller, or whether they are equal in quantity. For example, a child may compare two piles of
toys to see which has more.

,  Contribution to logical thinking: This concept helps children understand relationships
between different quantities. Through comparison, they learn to identify differences and
similarities, an essential step in mathematical operations like addition and subtraction, as
well as in understanding greater than, less than, or equal to.

3. Conservation

Conservation refers to the understanding that the quantity of a set remains the same, even if the
appearance of the set changes. For example, if you spread out a set of five objects, a child who
understands conservation will know that the number of objects hasn’t changed, even though they
look different.

 Contribution to logical thinking: Conservation helps children move beyond superficial
appearances and develop an understanding of the invariance of quantity. This is a critical
step in grasping more abstract mathematical concepts, such as place value and operations
like multiplication.

4. Ordering

Ordering refers to the ability to arrange objects or numbers in a sequence based on a specific
criterion, such as size, length, or quantity. For example, a child might line up toys from smallest
to largest or numbers in ascending order.

 Contribution to logical thinking: Ordering teaches children about sequences and
patterns, which are fundamental in understanding numerical progressions. It also lays the
foundation for understanding number lines and operations such as addition and
subtraction, which involve moving forward or backward along a sequence.

5. Subitising

Subitising is the ability to recognize the number of objects in a small set without counting them.
For example, a child can look at a group of three apples and instantly know there are three
without having to count each one individually.

 Contribution to logical thinking: Subitising enhances a child’s ability to perceive and
interpret quantities quickly, allowing for more efficient problem-solving. It also supports
early arithmetic skills by helping children recognize patterns in numbers and sets, such as
recognizing doubles or grouping for addition.

In summary, these pre-number concepts not only provide children with a foundational
understanding of numbers but also contribute to their ability to think logically about numerical
relationships, patterns, and operations. These early skills support future learning in arithmetic
and more advanced mathematics.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
Lela40 Chamberlain College Of Nursing
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
102
Lid sinds
2 jaar
Aantal volgers
64
Documenten
579
Laatst verkocht
2 maanden geleden

3.3

15 beoordelingen

5
4
4
3
3
5
2
0
1
3

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen