100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.6 TrustPilot
logo-home
Summary

data mining summary (table form) - Advanced data analysis

Rating
-
Sold
10
Pages
164
Uploaded on
13-09-2024
Written in
2024/2025

This summary is very useful because it is tabular and clearly divided into chapters. There is a term on the left and an accompanying explanation on the right. It is very useful during the open book exam to find information very quickly. At the end of the document are some sample questions.

Show more Read less
Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
September 13, 2024
Number of pages
164
Written in
2024/2025
Type
Summary

Subjects

Content preview

SUMMARY DATA ANALYSIS

CHAPTER 1 ~ INTRODUCTION


BIG DATA
Bit of context Get more comprehensive picture if you have integrated info (transcriptomics,
genomics, ..)
New perspectives by large scale molecular data.
Fundamentally new perspective that requires new tools --> they all fit into big data

Big data Big data= AI = deep learning
à evolution towards larger scale

Definition: is data for which conventional computer-techniques are not sufficient
anymore due to size, complexity,...
... is a disruptive trend in computer sciences. (let all our conventional ideas fall apart)

(complexity increases more compared to the evolution of computers)

Big data is characterized by 1. Volume
2. Velocity
3. Variety
4. Veracity

à is big data a reality in life sciences?

1. Volume = the amount of data we are dealing with, different than it was a long time ago




The cost of sequencing has become affordable, 2007 suddenly cost has decreased
drastically, moore’s law= this trend does not follow the getting cheaper of
sequencing, the computers cannot keep up.




1

, Moore's Law is an observation that the number of transistors in a computer chip
doubles every two years or so. As the number of transistors increases, so does
processing power. The law also states that, as the number of transistors increases,
the cost per transistor falls.

2. Velocity the speed at which it is produced, it is produces all the time (smart phone is
collecting data all the time that collects info from the environment) (data collected at
enormous speeds)




Data management gap: Speed data is produced goes faster than the growth of
people that deal with it. Impossible to have all IT people, need to be smarter how to
deal with this data

How bring data from sequencing facility to data servers in hospital --> most effective
way by bike (You have to be creative with big data)

Next step is special sequencing (single cell sequencing) à Produces massive data
Velocity is an important aspect, another trend

3. Variety in life science a lot of different data types, need to understand what you look at

heterogeneous and lots of unstructured data (eg sensor signals)




4. Veracity = data is never perfect, there might me noise, biases, info missing --> lots of aspect
that make you doubt the quality (how truthful is your data? Can you rely on it?)

It is problematic in life science, because living systems are stochastic and noisy -->
you have to deal with the messiness
Also techniques have limitations



2

,Consequences of big data à Large scale data and AI brought a new data intensive research paradigm.

(A paradigm is a standard, perspective, or set of ideas. A paradigm is a way of looking
at something.)

Large scale data they bring new paradigm à Shift in paradigm

Deep learning try to make sense of data by finding patterns in data

Data science




There is a lot of other AI than data science based AI
- Deep learning is a subset of machine learning that uses neural networks
with many layers (hence "deep") to model complex patterns in large
datasets.

- Data mining is the process of discovering patterns, correlations, and
anomalies within large sets of data using statistical and computational
techniques. (clustering, regression, discission trees, hierarchical clustering)


- Machine learning is a subset of artificial intelligence that focuses on
developing algorithms that enable computers to learn from and make
predictions or decisions based on data. (Includes supervised learning (e.g.,
linear regression, decision trees, neural networks), unsupervised learning
(e.g., k-means clustering, principal component analysis))




3

, WHAT IS DATA
What is data? Collection of data objects and their attributes
- Attribute = a property or characteristic of an object
• Examples: eye color of a person, temperature, etc.
• Attribute is also known as variable, field, characteristic, or feature
• objects= sample in lab, attribute = measure you do of the sample in the
lab
- A collection of attributes describe an object
• Object = is also known as record, point, case, sample, entity, or
instance
- Many other attributes for 1 object --> more, the better you know the object
- If have more attributes the better identify object
- Attributes can be numerical, binary, words

Example:




Attribute values Attribute values are numbers or symbols assigned to an attribute
- Distinction between attributes and attribute values

• Same attribute can be mapped to different attribute values
Example: height can be measured in cm or meters (160 cm or 1,6 m)

• Different attributes can be mapped to the same set of values
Example: Attribute values for ID and age are integers (whole numbers,
without any fractional or decimal parts)

• However properties of attribute values can still be different
Example: ID has no limit but age has a maximum and minimum value


- For each attribute type might have collection of values. E.g; post code
- Be aware what attribute value actually is
- Sometimes make choice what attribute values you allow (miles or feet)
- Can be max and min e.g. age

Attribute types • Nominal = Categories without a specific order
(based on properties) Examples: ID numbers, eye color, zip codes

• Ordinal = Categories with a meaningful order
Examples: rankings (e.g., taste of potato chips on a scale from 1-10), grades, height in
{tall, medium, short}

• Interval = Numerical data without a true zero point (The value zero represents a
complete absence of the attribute being measured)
Examples: calendar dates, temperatures in Celsius or Fahrenheit.



4

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
paulienmeulemeester Universiteit Antwerpen
Follow You need to be logged in order to follow users or courses
Sold
32
Member since
2 year
Number of followers
5
Documents
9
Last sold
8 months ago

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions