100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Lecture notes

Apuntes Bioquímica y biología molecular I (temas 1-9)

Rating
-
Sold
-
Pages
31
Uploaded on
11-09-2024
Written in
2023/2024

En este archivo podrás encontrar unos apuntes completamente explicados y redactados sobre los temas 1-9 de la asignatura de Bioquímica y biología molecular I que se imparte en la Universidad de Valladolid en el primer curso del grado en medicina. Este archivo cuenta, además, con explicaciones sencillas e imágenes que hacen más fácil su estudio.

Show more Read less
Institution
Module











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Module

Document information

Uploaded on
September 11, 2024
Number of pages
31
Written in
2023/2024
Type
Lecture notes
Professor(s)
Profesores bioquímica y biología molecular i
Contains
All classes

Subjects

Content preview

TEMAS 1 y 2. BIOMOLÉCULAS Y AGUA
1.1 Glosario
La materia está constituida por átomos y estos, a su vez, por electrones, protones y neutrones
con cargas negativa, positiva y neutra, respectivamente.
Unidad de masa atómica (u): Ion: átomo que está Isótopo: átomo con el




sy
es la 1/12 parte de la masa de cargado eléctricamente mismo número de
un átomo de carbono-12 en procedente de un átomo protones, pero con
su estado fundamental neutro que ha ganado o distinto número de
(1,66 × 10-27 kg). perdido electrones. neutrones.
Número atómico: número de Masa atómica: suma de Masa molecular: suma




ea
protones que componen el protones y neutrones del de masas atómicas de los
núcleo de un átomo de un átomo. elementos que forman el
elemento. compuesto.

Número de Avogadro: representa el número de moléculas o átomos que hay en un
mole de sustancia y es 6,022 × 10²³ unidades/mol.


1.2 Orbitales ed
Un orbital atómico es el volumen del espacio alrededor del núcleo en el que hay mayor
am
probabilidad de encontrar el electrón
Los orbitales se definen por 3 números cuánticos:
- Principal (n): establece la capa en la que está el electrón. Toma cualquier valor.
- Secundario (l): establece la subcapa en la que se encuentra. Toma valores (0
a n-1).
Si l=0, el orbital es de tipo s, esférico, en el que los electrones se mantienen
cerca del núcleo.
ud


Si l=1, el orbital es de tipo p, bilobulado, en el que los electrones están más
lejos del núcleo. La zona entre cada lóbulo se llama nodo y en ella la
probabilidad de encontrar el electrón es 0.
Si l=2, el orbital es de tipo d, y si l=3, es de tipo f.
- Magnético (m): establece la orientación del orbital. Toma valores (-l a +l).
- Spin (s): establece el sentido en el que gira el electrón. Toma valores (½ o –
Ay



½).
El principio de Aufbau establece que los orbitales con menor energía se llenan primero.
El principio de exclusión de Pauli establece que hay un máximo 2 electrones por orbital y con
spines opuestos. No existen 2 electrones en un mismo átomo con los 4 números cuánticos
@




iguales.
La regla de máxima multiplicidad de Hund establece que, si hay dos o más orbitales con la
misma energía, primero se semiocupan y luego se llenan.

1.3 Enlaces químicos
- Enlace iónico: se produce por transferencia de electrones, por la atracción
electrostática, debido a que los átomos tienen una diferencia de electronegatividad
mayor a 2. Este tipo de enlaces no se encuentran en nuestro organismo, ya que el agua
1
Reservados todos los derechos. Queda totalmente prohibida su explotación económica, modificación o realización de fotocopias.
Solo se permite su impresión.

, impide su formación. Se produce entre metal y no metal. La electronegatividad se mide
por la escala de Pauling.
- Enlace covalente: se produce por compartición de electrones entre átomos de similar
electronegatividad o tendencia a atraer los electrones compartidos.
Existen 2 tipos de enlaces covalentes:
• Enlace de tipo σ (sigma): se produce cuando 2 orbitales s, 2 orbitales p o 1 orbital s y
otro p interaccionan para compartir sus electrones. Este tipo de enlace se produce por




sy
solapamiento frontal y son enlaces simples.
• Enlace de tipo π (pi): se produce cuando, después de que uno de los orbitales p de la
molécula se haya solapado frontalmente con el orbital de otra molécula, 2 orbitales p
comparten sus electrones. Este tipo de enlace se produce por solapamiento lateral.
Cuando hay un enlace doble, se produce 1 enlace de tipo σ y otro de tipo π; cuando hay




ea
un enlace triple, se produce 1 enlace de tipo σ y 2 de tipo π.




1.4 Polaridad
ed
am
Para que una molécula sea polar debe estar compuesta por enlaces polares, es decir, que uno
de los átomos que componen la molécula debe ser más electronegativo y el momento dipolar
debe ser distinto de 0. Las moléculas con enlaces covalentes polares interaccionan con el agua
y son solubles en ella.

1.5 Orbitales moleculares
Cuando los orbitales de 2 átomos interaccionan para compartir sus electrones, se combinan
ud


ambos orbitales, formando 2 orbitales moleculares nuevos.
De este modo, si se combinasen 2 orbitales s, 2 orbitales p o un orbital s y otro p unidos mediante
un enlace σ, se formarían orbitales moleculares σ. Estos orbitales son cilíndricamente simétricos
y ovalados. En ellos los electrones se centran en el eje del enlace. Los enlaces σ rotan libremente.
Ay
@




Por otro lado, si se combinasen 2 orbitales p unidos mediante un enlace π, se
formarían orbitales moleculares π. Estos orbitales no son cilíndricamente simétricos.
En ellos los electrones se encuentran por encima y por debajo del eje del enlace. Los
enlaces π son rígidos, por lo que no giran.

1.6 Hibridación
La hibridación es la combinación de orbitales s y orbitales de tipo p para formar un nuevo orbital
de distinto tamaño y energía, pero dentro de una molécula todos ellos son iguales. En estos
2
Reservados todos los derechos. Queda totalmente prohibida su explotación económica, modificación o realización de fotocopias.
Solo se permite su impresión.

, orbitales, la densidad electrónica se sitúa hacia los extremos. Esta es la teoría que explica por
qué moléculas como el metano, forman más enlaces covalentes de los que se esperaría que
formasen por su configuración electrónica. Existen 4 tipos de hibridación:
- Hibridación sp: se forman 2 orbitales híbridos sp separados por 180°, por lo que la
molécula tiene disposición espacial lineal.
- Hibridación sp2: se forman 3 orbitales híbridos sp separados por 120°, por lo que la
molécula tiene disposición espacial trigonal plana.




sy
ea
-



ed
Hibridación sp3: se forman 4 orbitales híbridos sp separados por 109,5°, por lo que la
molécula tiene disposición espacial tetraédrica.
am
ud
Ay
@




3
Reservados todos los derechos. Queda totalmente prohibida su explotación económica, modificación o realización de fotocopias.
Solo se permite su impresión.

, sy
En las moléculas con enlaces dobles, uno de los orbitales no hibrida para formar un enlace de
tipo π y así crear el doble enlace. Y en las que tienen enlaces triples, 2 de los orbitales no hibridan




ea
para formar 2 enlaces π y así crear el triple enlace.
- Hibridación d2sp3: es la que sufre el Fe2+ que se encuentra en el núcleo de las
hemoproteínas para poder aportar a los nitrógenos que le rodean 6 orbitales vacíos (2
orbitales 3d, 1 orbital 4s y los 3 orbitales 4p), formando una molécula con disposición
octaédrica.




ed
am
1.7 Resonancia
La molécula de benceno es una molécula hexagonal formada por 6 átomos de carbono. Cada
carbono está unido mediante enlaces simples a uno de los otros carbonos y a un hidrógeno, y
mediante un enlace doble a otro de los carbonos. De este modo, si la molécula es hexagonal y 3
de sus 6 enlaces son dobles y el resto simples, entonces los enlaces dobles y los enlaces simples
deberían tener la misma longitud, algo que no concuerda con el hecho de que los enlaces dobles
ud


son más cortos que los simples. Por ello, lo que ocurre es que se crea un orbital molecular
deslocalizado, que es una mezcla de todas las estructuras posibles que podía presentar la
molécula. Para que existan este tipo de estructuras debe haber un aporte de energía de
resonancia, que produce una disminución energética que estabiliza el sistema.
Ay




1.8 Química orgánica
@




Las biomoléculas están formadas principalmente por C, H, O y N, los cuales conocemos como
bioelementos primarios. Sin embargo, también existen los bioelementos secundarios, que
forman parte de las biomoléculas, pero en menor proporción que los primarios, y son, por
ejemplo, Na+, Ca2+, K+ o Mg2+. Algunos de estos cationes producen las corrientes eléctricas que
provocan los impulsos nerviosos. El Fe, Co, Ni, Cu o Zn son algunos oligoelementos, es decir,
elementos que se presentan en cantidades muy pequeñas en nuestro organismo. El hierro es el
oligoelemento más abundante.

4
Reservados todos los derechos. Queda totalmente prohibida su explotación económica, modificación o realización de fotocopias.
Solo se permite su impresión.
$10.24
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
Ayudamedeasy

Get to know the seller

Seller avatar
Ayudamedeasy Universidad de Valladolid
Follow You need to be logged in order to follow users or courses
Sold
1
Member since
2 year
Number of followers
2
Documents
19
Last sold
1 year ago

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these revision notes.

Didn't get what you expected? Choose another document

No problem! You can straightaway pick a different document that better suits what you're after.

Pay as you like, start learning straight away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and smashed it. It really can be that simple.”

Alisha Student

Frequently asked questions