Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4,6 TrustPilot
logo-home
Resume

Management Research Methods 2 (MRM2) - Summary - Universiteit van Amsterdam (UvA)

Note
-
Vendu
6
Pages
32
Publié le
18-11-2019
Écrit en
2017/2018

All notes from the lectures and study materials summarized to optimally prepare you for the exam. Including supporting images. Management Research Methods 2 (MRM2) - Summary / Samenvatting - University of Amsterdam / Universiteit van Amsterdam - Pre-Master's in Business Administration - Pre-Master - Management Research Methods

Montrer plus Lire moins
Établissement
Cours











Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Établissement
Cours
Cours

Infos sur le Document

Publié le
18 novembre 2019
Nombre de pages
32
Écrit en
2017/2018
Type
Resume

Sujets

Aperçu du contenu

Content
Analysis of Variance................................................................................................................................. 3
Conceptual Models.............................................................................................................................. 3
Moderation...................................................................................................................................... 3
Mediation ........................................................................................................................................ 3
ANOVA ................................................................................................................................................. 4
Conditions........................................................................................................................................ 4
Hypothesis ....................................................................................................................................... 4
Test Statistics ................................................................................................................................... 5
Planned Contrast ............................................................................................................................. 9
Post-Hoc Tests ................................................................................................................................. 9
Moderation in ANOVA....................................................................................................................... 10
Factorial ANOVA ................................................................................................................................ 11
Conditions...................................................................................................................................... 11
Mean Squares ................................................................................................................................ 12
F-Test ............................................................................................................................................. 12
Partial Eta Squared (η2) ................................................................................................................. 13
Post-Hoc Tests ............................................................................................................................... 13
Regression ............................................................................................................................................. 14
Assumptions of Regression ........................................................................................................... 15
Model Testing ................................................................................................................................ 16
Categorical PV´s in regression and dummy variables ....................................................................... 18
Interpretation of β-coefficient ...................................................................................................... 19
Multicollinearity ................................................................................................................................ 20
Detecting multicollinearity ............................................................................................................ 20
Rules of thumb .............................................................................................................................. 20
Mediation .......................................................................................................................................... 21
Logistic Regression ............................................................................................................................ 24
Pseude-R2 ...................................................................................................................................... 24
Model Statistics ............................................................................................................................. 24
Coefficients .................................................................................................................................... 25
Factor Analysis (FA) ........................................................................................................................... 26
Principal Component Analysis (PCA) ............................................................................................. 26
Initial checks .................................................................................................................................. 26
Main analysis ................................................................................................................................. 27

1

, Reliability Analysis ............................................................................................................................. 29
Cronbach’s Alpha........................................................................................................................... 29
Further Analysis ............................................................................................................................. 30
References ............................................................................................................................................. 31




2

,Analysis of Variance

Conceptual Models
Conceptual models are visual representations of relations between theoretical constructs (and
variables) of interest.

Outcome variable (OV) = Dependent variable → Dependent upon other variables

Predictor variable (PV) = Independent variable → Not dependent upon other variables

Both OV’s and PV’s can have different measurement scales:

• Categorical
• Quantitative

Moderation
The proposed effect is stronger/weaker in certain settings. One variable moderates the relationship
between two other variables.

For example: “Mobile ownership only leads to higher mobile spending when there are options to pay
via mobile (not when there are no options to pay via mobile).”




Mediation
The proposed effect “goes through” another variable. One variable mediates the relationship
between two other variables.

For example: “The positive effect of mobile ownership on online mobile spending is mediated by
mobile browsing.”




3

, Rules for Conceptual Modals
• The boxes represent variables;
• Arrows represent relationships between variables;
• Arrows go from predictor variables (PV) to outcome variables (OV)

ANOVA
ANOVA is “Analysis of Variance” → Examine how much of the variance in the data can be explained
by the independent variable.

ANOVA is used to test whether statistically significant differences exist in scores on a quantitative
outcome variable, between different levels (groups) of a categorical predictor variable.

Variance: The average of the squared differences from the mean.




Conditions
(Between-subject) ANOVA is used when:

✓ Outcome Variable = Quantitative;
✓ Predictor Variable = Categorical > 2 groups;
✓ Between-subject design (Everyone participates in one experiment group only);
✓ Variance is homogenous across groups;
o Levene Statistic (H0: Variances are homogenous.)
✓ Residuals are normally distributed

Hypothesis
Hypotheses in ANOVA

H0: There is no difference in outcome variable scores between different levels of the independent
variable. → μ1 = μ2 = … = μi

H1: There is a difference in outcome variable scores between at least two levels of the independent
variable. → μ1 ≠ μ2 = … ≠ μi




4
$7.75
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur
Seller avatar
hjdeman

Faites connaissance avec le vendeur

Seller avatar
hjdeman Universiteit van Amsterdam
S'abonner Vous devez être connecté afin de pouvoir suivre les étudiants ou les formations
Vendu
6
Membre depuis
6 année
Nombre de followers
5
Documents
1
Dernière vente
3 année de cela

0.0

0 revues

5
0
4
0
3
0
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions