100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

Bayesian Statistics: Concepts & Definitions 100% Verified.

Beoordeling
-
Verkocht
-
Pagina's
7
Cijfer
A+
Geüpload op
28-08-2024
Geschreven in
2024/2025

Bayesian Statistics: Concepts & Definitions 100% Verified. Transition Kernel - answerdenoted 'P' - the transition kernel (or density) uniquely describes the dynamics of the chain Under what conditions will the distribution over the states of the Markov Chain converge to a stationary distribution? - answerWhen the chain is 'aperiodic' and 'irreducible' what does aperiodic mean? - answerA markov chain is aperiodic if for any state, the chain can return to that state after a number of transitions that are a multiple of 1 and can also be 1 What does irreducible mean? - answerA markov chain is irreducible if any state can be reached within finite time irrespective of the present state. Pros and Cons of Trace Plots - answerIt's a fairly efficient method but it is NOT robust. Define Burn-In? - answerIt's the initial realizations of the markov chain that we discard as the chain had not converged to the stationary distribution yet. What does it mean in terms of the posterior when there is low autocorrelation? - answerIt means samples are more representative of the posterior distribution The autocorrelation plot shows the correlation between what types of samples? - answerSuccessive samples Define thinning - answerThe process involves taking the kth realization of the markov chain and discarding the rest Thinning: Pros & Cons - answerIt reduces autocorrelation, but it also discards potentially good information. What does BUGS stand for - answerBayesian Inference Using Gibbs Sampling What can transformation can be useful to aid comparability, interpretability, and MCMC convergence? - answerNormalizing the data corresponding to explanatory variable(s) What do we typically conclude when posterior summaries are similar? - answerThe posterior distribution is data-driven. ©THEBRIGHT EXAM STUDY SOLUTIONS 8/22/2024 12:54 PM Explain the Gibbs Sampler (not its algorithm) - answerGibbs sampler uses the set of full conditionals of 'pi' to sample indirectly from the full posterior distribution. Explain the Metropolis-Hastings (not its algorithm). What's important about it? - answerThe MH algorithm sequentially draws obs. from a distribution, conditional only on the last obs., thus inducing a markov chain. Important aspect is that the approximating candidate distribution can be IMPROVED at each step of the simulation . Define mixing - answerThe movement around the parameter space. What can cause poor mixing? - answer1) a high rejection probability 2) very small step sizes Explain the idea behind Data Augmentation - answerWe treat the missing data (or auxiliary variables) as additional parameters to be estimated & form the joint posterior over both these auxiliary variables and models parameters 'theta vector' Explain the idea behind Hierarchical Models - answerThe idea is to LEARN the prior to use for the data we are analyzing by looking at related data sets How are 'no pooling' and 'complete pooling' combined in hierarchical modeling? - answerWe use the other data sets to choose an appropriate prior for our analysis, giving us a good 'initial guess' for the parameter value. What is the Bayes Factor a ratio of? - answerIt's a ratio of posterior odds to prior odds What is the Bayes Factor under the simple hypotheses equal to? - answerThe likelihood ratio! What is the Bayes Factor under the composite hypotheses equal to? - answerA ratio of the "weighted" likelihoods by the densities p(theta) When calculating the Bayes Factor what type of prior distribution should be used? why? - answerA proper prior! Otherwise, the BF becomes arbitrary Main part of inversion sampling? - answerCalculating the inverse CDG for the target distribution. Main part of rejection sampling? - answerUsing an envelope (rectangular box) to generate points at random over this regi

Meer zien Lees minder
Instelling
Bayesian Statistics
Vak
Bayesian Statistics









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Bayesian Statistics
Vak
Bayesian Statistics

Documentinformatie

Geüpload op
28 augustus 2024
Aantal pagina's
7
Geschreven in
2024/2025
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

©THEBRIGHT EXAM STUDY SOLUTIONS 8/22/2024 12:54 PM


Bayesian Statistics: Concepts & Definitions
100% Verified.


Transition Kernel - answer✔✔denoted 'P' - the transition kernel (or density) uniquely describes
the dynamics of the chain
Under what conditions will the distribution over the states of the Markov Chain converge to a
stationary distribution? - answer✔✔When the chain is 'aperiodic' and 'irreducible'

what does aperiodic mean? - answer✔✔A markov chain is aperiodic if for any state, the chain
can return to that state after a number of transitions that are a multiple of 1 and can also be 1

What does irreducible mean? - answer✔✔A markov chain is irreducible if any state can be
reached within finite time irrespective of the present state.

Pros and Cons of Trace Plots - answer✔✔It's a fairly efficient method but it is NOT robust.

Define Burn-In? - answer✔✔It's the initial realizations of the markov chain that we discard as
the chain had not converged to the stationary distribution yet.

What does it mean in terms of the posterior when there is low autocorrelation? - answer✔✔It
means samples are more representative of the posterior distribution
The autocorrelation plot shows the correlation between what types of samples? -
answer✔✔Successive samples

Define thinning - answer✔✔The process involves taking the kth realization of the markov chain
and discarding the rest

Thinning: Pros & Cons - answer✔✔It reduces autocorrelation, but it also discards potentially
good information.

What does BUGS stand for - answer✔✔Bayesian Inference Using Gibbs Sampling
What can transformation can be useful to aid comparability, interpretability, and MCMC
convergence? - answer✔✔Normalizing the data corresponding to explanatory variable(s)

What do we typically conclude when posterior summaries are similar? - answer✔✔The posterior
distribution is data-driven.

, ©THEBRIGHT EXAM STUDY SOLUTIONS 8/22/2024 12:54 PM

Explain the Gibbs Sampler (not its algorithm) - answer✔✔Gibbs sampler uses the set of full
conditionals of 'pi' to sample indirectly from the full posterior distribution.

Explain the Metropolis-Hastings (not its algorithm). What's important about it? - answer✔✔The
MH algorithm sequentially draws obs. from a distribution, conditional only on the last obs., thus
inducing a markov chain.


Important aspect is that the approximating candidate distribution can be IMPROVED at each
step of the simulation .

Define mixing - answer✔✔The movement around the parameter space.

What can cause poor mixing? - answer✔✔1) a high rejection probability


2) very small step sizes

Explain the idea behind Data Augmentation - answer✔✔We treat the missing data (or auxiliary
variables) as additional parameters to be estimated & form the joint posterior over both these
auxiliary variables and models parameters 'theta vector'

Explain the idea behind Hierarchical Models - answer✔✔The idea is to LEARN the prior to use
for the data we are analyzing by looking at related data sets

How are 'no pooling' and 'complete pooling' combined in hierarchical modeling? - answer✔✔We
use the other data sets to choose an appropriate prior for our analysis, giving us a good 'initial
guess' for the parameter value.

What is the Bayes Factor a ratio of? - answer✔✔It's a ratio of posterior odds to prior odds

What is the Bayes Factor under the simple hypotheses equal to? - answer✔✔The likelihood
ratio!

What is the Bayes Factor under the composite hypotheses equal to? - answer✔✔A ratio of the
"weighted" likelihoods by the densities p(theta)
When calculating the Bayes Factor what type of prior distribution should be used? why? -
answer✔✔A proper prior! Otherwise, the BF becomes arbitrary

Main part of inversion sampling? - answer✔✔Calculating the inverse CDG for the target
distribution.

Main part of rejection sampling? - answer✔✔Using an envelope (rectangular box) to generate
points at random over this region

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
Thebright Florida State University
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
177
Lid sinds
1 jaar
Aantal volgers
6
Documenten
12345
Laatst verkocht
5 uur geleden
Topscore Emporium.

On this page, you find verified, updated and accurate documents and package deals.

3.8

35 beoordelingen

5
13
4
10
3
7
2
1
1
4

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen