100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

FIN2601 Assignment 2 COMPLETE ANSWERS) Semester 2 2024

Beoordeling
-
Verkocht
-
Pagina's
16
Cijfer
A+
Geüpload op
26-08-2024
Geschreven in
2024/2025

100% TRUSTED WORKINGS, EXPLANATIONS & SOLUTIONS

Instelling
Vak










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Vak

Documentinformatie

Geüpload op
26 augustus 2024
Aantal pagina's
16
Geschreven in
2024/2025
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

FIN2601 Assignment 2
COMPLETE ANSWERS)
Semester 2 2024
100% GUARANTEED

,FIN2601 Assignment 2 COMPLETE ANSWERS) Semester
2 2024
Question 1 Complete Mark 1.00 out of 1.00 QUIZ The
financial manager of Summer Financial Group is tasked
with evaluating the standard deviation of a proposed
investment project. This analysis aims to provide insights
into the potential risk associated with the project's
expected returns, which are linked to the future
performance of the economy over a specific period as
follows: Economic scenario Probability of occurrence Rate
of return Recession 0,1 20% Normal 0,6 13% Boom 0,3
17% What is the standard deviation of the proposed
investment project? 1. 7,07% 2. 10,45% 3. 15,81% 4.
18,67% −
To calculate the standard deviation of the proposed investment project, we can follow these
steps:

1. Calculate the Expected Rate of Return (E[R]):

E[R]=(P1×R1)+(P2×R2)+(P3×R3)E[R] = (P_1 \times R_1) + (P_2 \times R_2) + (P_3 \
times R_3)E[R]=(P1×R1)+(P2×R2)+(P3×R3)

Where:

o P1,P2,P3P_1, P_2, P_3P1,P2,P3 are the probabilities of the scenarios.
o R1,R2,R3R_1, R_2, R_3R1,R2,R3 are the corresponding rates of return.

E[R]=(0.1×20%)+(0.6×13%)+(0.3×17%)E[R] = (0.1 \times 20\%) + (0.6 \times 13\%) +
(0.3 \times 17\%)E[R]=(0.1×20%)+(0.6×13%)+(0.3×17%)
E[R]=0.02+0.078+0.051=0.149=14.9%E[R] = 0.02 + 0.078 + 0.051 = 0.149 =
14.9\%E[R]=0.02+0.078+0.051=0.149=14.9%

2. Calculate the Variance (σ²):

σ2=P1×(R1−E[R])2+P2×(R2−E[R])2+P3×(R3−E[R])2\sigma^2 = P_1 \times (R_1 -
E[R])^2 + P_2 \times (R_2 - E[R])^2 + P_3 \times (R_3 - E[R])^2σ2=P1×(R1
−E[R])2+P2×(R2−E[R])2+P3×(R3−E[R])2 σ2=0.1×(20%−14.9%)2+0.6×(13%
−14.9%)2+0.3×(17%−14.9%)2\sigma^2 = 0.1 \times (20\% - 14.9\%)^2 + 0.6 \times
(13\% - 14.9\%)^2 + 0.3 \times (17\% - 14.9\%)^2σ2=0.1×(20%−14.9%)2+0.6×(13%

, −14.9%)2+0.3×(17%−14.9%)2 σ2=0.1×(5.1%)2+0.6×(−1.9%)2+0.3×(2.1%)2\sigma^2 =
0.1 \times (5.1\%)^2 + 0.6 \times (-1.9\%)^2 + 0.3 \times
(2.1\%)^2σ2=0.1×(5.1%)2+0.6×(−1.9%)2+0.3×(2.1%)2
σ2=0.1×0.002601+0.6×0.000361+0.3×0.000441\sigma^2 = 0.1 \times 0.002601 + 0.6 \
times 0.000361 + 0.3 \times 0.000441σ2=0.1×0.002601+0.6×0.000361+0.3×0.000441
σ2=0.0002601+0.0002166+0.0001323=0.000609\sigma^2 = 0.0002601 + 0.0002166 +
0.0001323 = 0.000609σ2=0.0002601+0.0002166+0.0001323=0.000609

3. Calculate the Standard Deviation (σ):

σ=0.000609≈0.02466=2.47%\sigma = \sqrt{0.000609} \approx 0.02466 =
2.47\%σ=0.000609≈0.02466=2.47%

Since the calculated standard deviation of 2.47% does not match any of the options provided,
there may have been a calculation error. I'll recalculate to ensure accuracy.

Let's compute the variance more carefully.

1. Calculate the Expected Rate of Return:

E[R]=(0.1×20%)+(0.6×13%)+(0.3×17%)=0.02+0.078+0.051=14.9%E[R] = (0.1 \times
20\%) + (0.6 \times 13\%) + (0.3 \times 17\%) = 0.02 + 0.078 + 0.051 =
14.9\%E[R]=(0.1×20%)+(0.6×13%)+(0.3×17%)=0.02+0.078+0.051=14.9%

2. Calculate the Variance:

σ2=0.1×(20%−14.9%)2+0.6×(13%−14.9%)2+0.3×(17%−14.9%)2\sigma^2 = 0.1 \times
(20\% - 14.9\%)^2 + 0.6 \times (13\% - 14.9\%)^2 + 0.3 \times (17\% -
14.9\%)^2σ2=0.1×(20%−14.9%)2+0.6×(13%−14.9%)2+0.3×(17%−14.9%)2
σ2=0.1×(5.1%)2+0.6×(−1.9%)2+0.3×(2.1%)2\sigma^2 = 0.1 \times (5.1\%)^2 + 0.6 \
times (-1.9\%)^2 + 0.3 \times (2.1\%)^2σ2=0.1×(5.1%)2+0.6×(−1.9%)2+0.3×(2.1%)2
σ2=0.1×(0.002601)+0.6×(0.000361)+0.3×(0.000441)\sigma^2 = 0.1 \times (0.002601) +
0.6 \times (0.000361) + 0.3 \times
(0.000441)σ2=0.1×(0.002601)+0.6×(0.000361)+0.3×(0.000441)
σ2=0.0002601+0.0002166+0.0001323=0.000609\sigma^2 = 0.0002601 + 0.0002166 +
0.0001323 = 0.000609σ2=0.0002601+0.0002166+0.0001323=0.000609

3. Calculate the Standard Deviation:

σ=0.000609=0.02466=2.47%\sigma = \sqrt{0.000609} = 0.02466 = 2.47\%σ=0.000609
=0.02466=2.47%

It seems there was an error in identifying the correct standard deviation. I will compute this once
more using a different approach.
$2.50
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
Tutorials
1.0
(1)

Maak kennis met de verkoper

Seller avatar
Tutorials Georgetown University
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
10
Lid sinds
1 jaar
Aantal volgers
8
Documenten
232
Laatst verkocht
7 maanden geleden

1.0

1 beoordelingen

5
0
4
0
3
0
2
0
1
1

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen