100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Wiskunde Samenvatting (Jaar 1 Bedrijfseconomie UvT)

Beoordeling
3.6
(5)
Verkocht
29
Pagina's
45
Geüpload op
23-10-2019
Geschreven in
2018/2019

Samenvatting van het boek Wiskunde voor Bedrijfseconomen voor de opleiding Bedrijfseconomie jaar 1 UvT. Duidelijke geschreven met uitwerking van opgaven. Ik had een 9,4 met deze samenvatting. Als ik het kan, kunnen jullie het ook!

Instelling
Vak











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Gekoppeld boek

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Heel boek samengevat?
Ja
Geüpload op
23 oktober 2019
Bestand laatst geupdate op
13 mei 2020
Aantal pagina's
45
Geschreven in
2018/2019
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Hoofdstuk 1 Introductie van functies van één variabele
1.1 Functies van één variabele
X = onafhankelijke variabele

Y = afhankelijke variabele

Domein: Mogelijke onafhankelijke variabelen

Bereik: Mogelijke afhankelijke variabelen

“<” of “(“ = Grens doet niet mee

“≤” of “[“ = Grens doet wel mee

(x + y)2 = x2+y2 + 2xy

1.2 Overzicht van functies van één variabele
Constante functie: y(x) = c

Lineaire functies: y(x) = ax + b

−b
 Formule voor nulpunt:
a
Kwadratische functie: ax2 + bx + c

 Formule voor nulpunten:

o Bij D≥0:
−b+¿−√ b2−4 ac
2a
o Bij D<0 bestaat er geen nulpunt
 Oplossen ongelijkheid: f(x) ≥ g(x)
o Stap 1: Definieer de functie h(x) = f(x) – g(x)
o Stap 2: Bepaal de nulpunten van h(x) middels de ABC-methode of ontbinden in
factoren
o Stap 3: Maak een tekenoverzicht van h(x)
o Stap 4: Lees in het tekenoverzicht af waar h(x) ≥ 0

,Beschouw de functies f(x) = x2 + 4 en g(x) = - 5x. Welke x’en voldoen aan de voorwaarde f(x) ≥
g(x) ?

Stap 1: Definieer de functie h(x) = f(x) – g(x).

x2 + 5x + 4

Stap 2: Bepaal de nulpunten van h(x) middels de ABC-methode of ontbinden in factoren

(x + 4) (x + 1), dus y is gelijk aan 0 bij x=-4 en x=-1

Stap3: Maak een tekenoverzicht van h(x)

Vul de y-variabelen in waarbij x=0 en vul nog twee x’en die hoger en lager liggen
dan beide y’en om te weten te komen welk domein voldoet aan de voorwaarde




Polynoomfunctie: Een functie waarbij an niet gelijk aan 0 is (omdat het anders een lineaire functie is
met een graad die hoger ligt dan 2, bijvoorbeeld ax 3 + bx2 + cx

 Nulpunten bepalen: ax3 + bx2 + cx (=) x(ax2 + bx + c). Hierbij is x=0 een nulpunt (omdat in elk
component een x voorkomt) en de kwadratische functie kan opgelost worden met de abc-
formule of ontbinden in factoren

Bepaal het nulpunt van 3x3 - 6x2 + 9x

Stap 1: Buiten haakjes halen: x(2x2 – 6x + 9)

Stap 2: De kwadratische functie oplossen. (x – 3) (x – 3)

Stap 3: Conclusie. Bij (0,0) en (3,0)



Bepaal het nulpunt van x4 - 6x2 - 7

Dit is gelijk aan (x2 - 7) (x2 + 1). Hierbij zijn de nulpunten dus x 2 = 7 en x2 = -1. Het gaat dus
om het punt (√ 7,0) en het punt (-√ 7 , 0 ¿, omdat de wortel van -1 niet mogelijk is.



Eigenschappen machtfuncties:

1) xm * xn = xm+n
xm m-n
2) =x
xn
3) (xm)n = xm*n
4) xm * ym = (xy)m
5) x0 = 1

, 1
6) x-m =
xm

, −5
Bepaal p in de vergelijking ( 4√ x 7 ) =x p

Gebruik makend van de eigenschappen van de machtfuncties, kan p met de volgende
stappen worden bepaald:

4 7 −5 p 7 −5 p
(√x ) =x (=) ( x ¿ ¿ ) =x ¿
4
35
−( )
( ¿) x =x p . En omdat beide grondtallen hetzelfde zijn, kan nu deze weggestreept
4

35
worden: (=) - = p = -83/4
4
Exponentiële functie: Een functie waarbij de onafhankelijke factor de exponent is. Hierbij geldt dat
het grondgetal positief is en niet 1 bedraagt. Het grondgetal is daarom hier de groeifactor.

Eigenschappen van exponentiële functie: Hierbij is x het grondgetal a geworden en kan m vervangen
worden door de onafhankelijke factor en n door de afhankelijke factor. Hier komen de volgende
eigenschappen/kenmerken bij:

1) ax * ay = ax + y
2) ax = ay (=) x = y
Los de vergelijk 2x = 44x+6 op.

2x = (22)4x+6. Het rechtgedeelte kan nu herleid worden met 2 2(4x+6) en 28x+12.

12
Beide componenten zijn gelijk, dus: x = 8x + 12. -7x = 12. X = -
7
Logaritmische functies: Een functie met een x die >0 is met de vorm alog x, waarbij a niet 1 of een
negatief getal is. Ook hier kan a als groeifactor gezien worden, waarbij x het getal de uitkomst van
een macht die met a vermenigvuldigd is, dus: ay = x.

Het getal van Euler: Het grondtal van een natuurlijk logaritme. Hierbij is dus elog x = In x. Dit heeft de
volgende relaties met de exponentiële functie met grondtal e:

1) Y = In ey
2) X = eIn x, (x > 0)

Eigenschappen logaritmische functies:

1) Log(x * y) = log x + log y
x
2) Log = log x – log y
y
3) Log xy = y log x
4) Log 1 = 0
5) alog x = alog y (=) x = y
$4.17
Krijg toegang tot het volledige document:
Gekocht door 29 studenten

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Beoordelingen van geverifieerde kopers

Alle 5 reviews worden weergegeven
3 jaar geleden

3 jaar geleden

4 jaar geleden

4 jaar geleden

5 jaar geleden

3.6

5 beoordelingen

5
1
4
3
3
0
2
0
1
1
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
UvTstudent98 Tilburg University
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
542
Lid sinds
6 jaar
Aantal volgers
411
Documenten
5
Laatst verkocht
5 dagen geleden

3.6

47 beoordelingen

5
7
4
20
3
14
2
4
1
2

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen