100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary Graad 12 wiskunde notas

Rating
-
Sold
1
Pages
51
Uploaded on
07-08-2024
Written in
2022/2023

Graad 12 wiskunde notas

Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Course
Schooljaar
200

Document information

Summarized whole book?
Yes
Uploaded on
August 7, 2024
Number of pages
51
Written in
2022/2023
Type
Summary

Subjects

Content preview

Graad 12




Hierdie is die oorspronklike werk van die
Platinum Graad 12 Wiskunde handboek
wat slegs deur skool_notas opgesom is.
Dit mag nie herverkoop/versprei of
onder n nuwe lisensie verkoop word nie.

, Skool Instagram : @skool_notas
Epos :

Notas
Webtuiste : https://skoolnotas.company.site/
Whatsapp : 081 369 9131
Hierdie notas mag nie herverkoop, gekopieer, versprei of onder ‘n nuwe lisensie verkoop word nie.




Patrone rye en reekse ...................................................................................................................................................... 3
Rekeningkundige rye........................................................................................................................................................... 3
Meetkundige rye ..................................................................................................................................................................... 4
Die som van rekeningkundige reekse ................................................................................................................. 4
Die som van meetkundige reekse ........................................................................................................................... 5
Sigma-notasie ........................................................................................................................................................................... 6
Kwadratiese patrone en kombinasies van rekeningkundige en meetkundige rye .... 7
Funksies en inverse funksies ..................................................................................................................................... 8
Funksies .......................................................................................................................................................................................... 8
Die reguitlyn ................................................................................................................................................................................ 8
Die parabool............................................................................................................................................................................... 8
Die hiperbool.............................................................................................................................................................................. 9
Die eksonensiële grafiek .................................................................................................................................................10
Inverse funksies .......................................................................................................................................................................11
Eksponensiële en logaritmiese funksies..........................................................................................................12
Hersiening van eksponentwette en eksponensiële funksies .........................................................12
Logaritmes en logaritmiese funksies ..................................................................................................................13
Finansies groei en waardevermindering ....................................................................................................... 14
Hersiening Graad 11 : finansies, groei en waardevermindering ................................................. 14
Afleiding en gebruik van formules vir annuïteite .................................................................................... 14
Annuïteite : toepassing en probleemoplossing ........................................................................................ 16
Bereken tydperiodes met behulp van logaritmes .................................................................................. 18
Ontleed beleggings- en leningsopsies ............................................................................................................. 18
Trigonometrie : saamgestelde- en dubbel-identiteite ........................................................................ 20
Hersiening Graad 11 : trigonometrie ....................................................................................................................20
Afleiding van saamgestelde- en dubbel-identiteite ..............................................................................21
Los vergelykings op en bepaal die algemene oplossing................................................................ 23
Trigonometrie : probleemoplossing in twee en drie dimensies .................................................. 25
Probleme in twee dimensies ...................................................................................................................................... 25
Probleem in drie dimensies ........................................................................................................................................ 26
Veelterme (polinome)......................................................................................................................................................27
Faktoriseer derdegraadse veelterme ............................................................................................................... 27
Faktoriseer en los derdegraadse veelterme op deur die res- of faktorstelling te
gebruik .......................................................................................................................................................................................... 28


1

, Skool Instagram : @skool_notas
Epos :

Notas
Webtuiste : https://skoolnotas.company.site/
Whatsapp : 081 369 9131
Hierdie notas mag nie herverkoop, gekopieer, versprei of onder ‘n nuwe lisensie verkoop word nie.


Differensiasie ........................................................................................................................................................................ 30
Limiete ............................................................................................................................................................................................30
Gebruik limiete om die afgeleide van ’n funksie f te definieer ................................................... 32
Difrensiasie van ’n funksie vanuit eerste beginsels ............................................................................. 32
Gebruik die spesifieke reëls van difrensiasie............................................................................................. 33
Bepaal die vergelyking van raaklyne aan grafieke .............................................................................. 34
Die tweede afgeleide ........................................................................................................................................................ 34
Skets grafieke van derdegraadse funksies ................................................................................................. 36
Optimering en veranderingstempo ................................................................................................................... 36
Analitiese meetkunde ....................................................................................................................................................37
Vergelyking van ‘n sirkel ............................................................................................................................................... 37
Vergelyking van ’n raaklyn aan ’n sirkel.......................................................................................................... 38
Euklidiese meetkunde ...................................................................................................................................................39
Hersiening Graad 11 : meetkunde.......................................................................................................................... 39
Gelykvormige veelhoeke ............................................................................................................................................... 40
Die eweredigheidstelling .............................................................................................................................................. 40
Gelykhoekige driehoeke en gelykvormigheid ............................................................................................ 42
Driehoeke met eweredige sye en gelykvormigheid .............................................................................. 42
Pythagoras se Stelling en gelykvormigheid ................................................................................................ 43
Statistiek ................................................................................................................................................................................. 44
Hersiening van skewe en simmetriese data ............................................................................................... 44
Tweeveranderlike (bivariate) data : spredingsdiagramme regressielyne en
korrelasie .................................................................................................................................................................................... 44
Die telbeginsel en waarskynlikheid.................................................................................................................... 47
Hersiening van reëls vir onafhanklike, onderling uitsluitende en komplementêre
gebeurtenisse ......................................................................................................................................................................... 47
Gebruik Venn-diagramme boomdiagramme en gebeurlikheidstabelle ........................... 48
Die fundamentele telbeginsel .................................................................................................................................. 49
Toepassings van die telbeginsel om waarskynlikheidsprobleme op te los ................... 50




2

, Skool Instagram : @skool_notas
Epos :

Notas
Webtuiste : https://skoolnotas.company.site/
Whatsapp : 081 369 9131
Hierdie notas mag nie herverkoop, gekopieer, versprei of onder ‘n nuwe lisensie verkoop word nie.




→ a; a + d; a + 2d; a + 3d; a + 4d; a + 5d; ... a + (n - 1) d
→ A is die waarde van die eerste term.
→ D is die algemene verskil tussen die terme, d = T2 – T1 = T3 – T2 = Tn – Tn-1
→ Tn is die waarde van die term in posisie n, dus Tn = a + (n - 1)d
→ N is die posisie van 'n term en kan slegs 'n positiewe heelgetal wees, ook bekend
as 'n natuurlike getal.

Byvoorbeeld
→ Oorweeg die rekenkundige reeks 3; 7; 11; 15; … 99
→ T1 = 3; T2 = 7; T3 = 11; T4 = 15

d1 = T2 - T1 d2 = T3 - T2 d3 = T4 - T3
=7-3 = 11 - 7 = 15 - 11
=4 =4 =4

→ Aangesien d1 = d2 = d3, het ons 'n algemene verskil van 4.
→ Die eerste term word gegee deur a = 3 en die algemene verskil word gegee deur d
= 4.
→ Ons bepaal die formule vir die nde term in die ry deur a = 3 en d = 4 te vervang in
Tn = a + (n - 1) d.
→ Dit gee ons Tn = 3 + (n - 1)(4)
→ = 3 + 4n - 4
→ = 4n - 1
→ Kontroleer die formule deur n = 1 te vervang om die waarde van T1 te kry, n = 2 om
die waarde van T2 te kry, ensovoorts.
→ As n = 1, dan is T1 = 4 (1) - 1 = 3
→ As n = 2, dan is T2 = 4 (2) - 1 = 7
→ As n = 3, dan is T3 = 4 (3) - 1 = 11
→ Die nde termformule, Tn = 4n - 1, kan gebruik word om die posisie van enige term in
die ry te bepaal as die waarde van die term gegee word.
→ Om te bepaal watter term 'n waarde van 99 het, vervang Tn = 99 in Tn = 4n - 1.
→ 99 = 4n - 1 ⇒ 4n = 100 en n = 25, dus T25 = 99, wat beteken dat die vyf -en -twintigste
term 'n waarde van 99 het.




3
$9.21
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached


Also available in package deal

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
elrilombard University of Pretoria
Follow You need to be logged in order to follow users or courses
Sold
27
Member since
1 year
Number of followers
4
Documents
25
Last sold
2 weeks ago

5.0

1 reviews

5
1
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions