100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Overig

STA3701 Assignment 3 answers 2024

Beoordeling
-
Verkocht
-
Pagina's
16
Geüpload op
29-07-2024
Geschreven in
2023/2024

Guaranteed success with comprehensive answers and guidance. Avoid copying and engage with the solutions.

Instelling
Vak










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Vak

Documentinformatie

Geüpload op
29 juli 2024
Aantal pagina's
16
Geschreven in
2023/2024
Type
Overig
Persoon
Onbekend

Onderwerpen

Voorbeeld van de inhoud

STA3701
Machuene Elias Mabetoa

2024-07-19
# Load necessary packages
library(faraway)

## Warning: package 'faraway' was built under R version 4.3.3

library(car) # For VIF calculation

## Warning: package 'car' was built under R version 4.3.2

## Loading required package: carData

## Warning: package 'carData' was built under R version 4.3.2

##
## Attaching package: 'car'

## The following objects are masked from 'package:faraway':
##
## logit, vif

library(MASS) # For Box-Cox transformation
library(ggplot2) # For plotting

# Load the dataset
data(fat)

###1.1 Purpose of the Study The purpose of this study is to determine the relationship
between body fat percentage (measured by the Brozek formula) and various body
measurements, age, height, and weight among a sample of 252 men.

1.2 Percentage of Variation Explained
• The R-squared value is approximately 0.970, which means that about 97% of the
variation in body fat percentage (Brozek) is explained by the predictors in the
model.
# Fit the initial model
model <- lm(brozek ~ . - siri - density, data = fat)
summary_model <- summary(model)
r_squared <- summary_model$r.squared

# Output R-squared
print(r_squared)

## [1] 0.9700398

,1.3
Based on the purpose of the study, we are examining the relationship between body fat
percentage and various predictors: body measurements, age, height, and weight. To
determine if there are signs of multicollinearity, we would look for:
High Correlations Among Predictors: If body measurements (e.g., waist circumference, hip
circumference), age, height, and weight are highly correlated with each other, it might
indicate multicollinearity. For example, height and weight often have a high correlation,
which could lead to multicollinearity.
Variance Inflation Factors (VIFs): If we have computed VIFs for our predictors, values
greater than 10 (or sometimes 5, depending on the threshold used) would suggest
multicollinearity.
Condition Index: A high condition index (e.g., above 30) indicates multicollinearity issues.
Without specific data on the correlations or VIFs, it’s hard to definitively say if
multicollinearity is present. However, if we observe that some of our predictor variables
are highly correlated with each other, or if VIFs and condition indices indicate high
multicollinearity, then your model might have multicollinearity issues.

1.4 Multicollinearity Diagnostics
Multicollinearity in the Model:
To detect multicollinearity, we will use several diagnostics: condition numbers, scatterplot
and pairwise correlation matrices, and variance inflation factors (VIF).
# (a) Condition Numbers
condition_numbers <- kappa(model, exact = TRUE)
print(condition_numbers)

## [1] 20167.94

Condition numbers help to determine the degree of multicollinearity in the model. A
condition number greater than 30 suggests moderate to severe multicollinearity.
-A condition number of 20167.94 indicates severe multicollinearity in the model.
# (b) Scatterplot and Pairwise Correlation Matrices
# Adjust margins and plot the scatterplot matrix
op <- par(mar = c(1, 1, 1, 1))
pairs(fat[ , !(names(fat) %in% c("brozek", "siri", "density"))])

, par(op) # Reset to original parameters

The scatterplot matrix visualizes pairwise relationships between each pair of variables in
the dataset. Each cell in the matrix contains a scatterplot of two variables, with the
variables’ names labeled along the diagonal. The plots can help identify patterns,
relationships, and potential multicollinearity among the variables.
Here is a brief interpretation of the scatterplot matrix:
Diagonal Elements: Each diagonal element represents the distribution of a single variable,
often shown as a histogram or density plot. These plots give a sense of the univariate
distribution of each variable.
Off-Diagonal Elements: These scatterplots show the relationship between pairs of
variables:
Linear Relationships: Variables with linear relationships will show a clear, straight pattern
in their corresponding scatterplot. For example, the scatterplots involving weight, adipos,
chest, abdom, and hip show strong linear relationships, indicating potential
multicollinearity. Clustered Patterns: If points are clustered tightly around a line, it
indicates a strong relationship. Loose and spread-out points suggest weaker relationships.
Outliers: Points that fall far from the main cloud of data can indicate outliers, which might
need special consideration in the analysis. Identifying Multicollinearity:
High Correlations: Pairs of variables with high correlations (visible as tightly clustered
points along a line) suggest multicollinearity. For example, the scatterplots for weight

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
Mmatshwene05 University of South Africa (Unisa)
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
57
Lid sinds
4 jaar
Aantal volgers
47
Documenten
11
Laatst verkocht
8 maanden geleden
StudWithU

The help you need is the achievement you are working hard for.

3.9

10 beoordelingen

5
6
4
1
3
1
2
0
1
2

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen