100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4,6 TrustPilot
logo-home
Tentamen (uitwerkingen)

XI_Physics_New_Chap_6_Systems_of_Particles_and_Rotational_Motion

Beoordeling
-
Verkocht
-
Pagina's
15
Cijfer
A+
Geüpload op
23-06-2024
Geschreven in
2023/2024

XI_Physics_New_Chap_6_Systems_of_Particles_and_Rotational_Motion

Instelling
Vak









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
23 juni 2024
Aantal pagina's
15
Geschreven in
2023/2024
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

XI Physics_New Chapter-6_System of Particles and Rotational Motion_[True or False Statement Questions]
Sl # Statements [6.1 Introduction] True/False

In the study of motion, extended bodies are considered as systems of particles, where the
1 TRUE
center of mass is a key concept.
Rigid bodies are idealized as bodies with perfectly definite shapes, and they may have pure
2 TRUE
translational motion or a combination of translation and rotation.
Rotation of a rigid body is characterized by particles moving in circles lying in planes
3 TRUE
perpendicular to the axis of rotation.
In cases of rotation about a fixed axis, the axis remains stationary, and each particle on the axis
4 TRUE
stays at rest.
The rolling motion of a cylinder down an inclined plane involves both translation and rotation,
5 TRUE
making it a combination of motion types.
In physics, the concept of a rigid body is used to simplify the analysis of motion, where a rigid
6 TRUE
body maintains its shape.
Translational motion occurs when all particles of a rigid body move with the same velocity at
7 TRUE
any instant, as in the case of a block sliding down an inclined plane.
In some cases of rotation, like an oscillating table fan, the axis of rotation is not fixed but
8 TRUE
sweeps out a cone as it moves, called precession.
In physics, the motion of a rigid body can either be pure translation or a combination of
9 TRUE
translation and rotation, depending on whether it is pivoted or fixed.




1 OF 15 RI_Best Wishes

, XI Physics_New Chapter-6_System of Particles and Rotational Motion_[True or False Statement Questions]
Sl # Statements [6.1 Center of Mass] True/False

The center of mass of a system of particles can be calculated by finding the mass-weighted
1 TRUE
mean of the individual particle positions.
2 For two particles of equal mass, the center of mass lies exactly midway between them. TRUE
The center of mass of a homogeneous thin rod coincides with its geometric center due to
3 TRUE
reflection symmetry.
The center of mass of a triangle lies at the point of concurrence of its medians, known as the
4 TRUE
centroid.
The center of mass of a uniform L-shaped lamina can be found by considering the individual
5 TRUE
squares that make up the L shape and finding their center of mass.
The center of mass of a system of particles is a point where the sum of the mass-weighted
6 TRUE
positions of individual particles equals the total mass of the system.
Center of mass coordinates can be found using X = (∑mixi) / (∑mi) and Y = (∑miyi) / (∑mi), with xi
7 TRUE
and yi representing individual particle positions.
The center of mass of a uniform L-shaped lamina with multiple squares can be calculated by
8 TRUE
finding the center of mass of each square and determining their overall center of mass.
The center of mass of a homogeneous body with regular shapes like rings, discs, spheres, and
9 TRUE
rods lies at their geometric centers due to symmetry.
Using the concept of reflection symmetry, the center of mass of a thin rod coincides with its
10 TRUE
geometric center.
If the origin of the coordinate system is chosen as the center of mass, the sum of the position
11 TRUE
vectors of individual particles becomes zero.
The center of mass of a rigid body is determined using the formula R = (∫r dm) / M, where R is
12 the center of mass position vector, r is the mass element's position vector, dm is the mass TRUE
element, and M is the total body mass.
As the number of particles in a continuous distribution becomes large, we approximate the
13 TRUE
center of mass using integrals, where the origin is chosen as the center of mass.




2 OF 15 RI_Best Wishes

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
DoctorHkane Havard School
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
738
Lid sinds
5 jaar
Aantal volgers
168
Documenten
22488
Laatst verkocht
1 dag geleden

Explore my Stuvia collection for essential study aids: test banks, exams, summaries, and cases. With five years of expertise as an academic writer, I have honed my skills in crafting top-notch essays, exams, and research dissertations. My proficiency lies in producing well-structured and thoroughly researched content that meets academic standards. I am adept at handling various subjects and ensuring a seamless flow of ideas. Whether it's delivering compelling arguments in essays, creating challenging yet fair exam questions, or delving into in-depth research for dissertations, my experience equips me to excel in diverse academic writing tasks. I pride myself on meeting deadlines and maintaining the highest quality in every piece I produce. REACH ON iamnjokikelvin1@gmail

Lees meer Lees minder
4.6

387 beoordelingen

5
309
4
29
3
21
2
10
1
18

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen