100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary Chapter 3 & 13, Periodicity (IB Chemistry

Rating
-
Sold
-
Pages
1
Uploaded on
14-06-2024
Written in
2023/2024

This page encompasses all of the patterns in the periodic table including the: atomic radius, ionic radius, ionisation energy, electron affinity, electronegativity, metallic characteristics, oxides for Chapter 3. For Chapter 13, all of the characteristics of transition metals are described.

Show more Read less
Level
Course








Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Secondary school
Level
Course
School year
6

Document information

Summarized whole book?
Unknown
Uploaded on
June 14, 2024
Number of pages
1
Written in
2023/2024
Type
Summary

Subjects

Content preview

Periodic table trends
Transition Metals
electron affinity *
ionisation
energy VARIABLE OXIDATION STATES
D
A A • when orbitals are occupies, the expulsion between electrons pushes 4s into a higher energy
METALLIC CHARACTERISTICS
state, so it becomes lightly higher in energy then 3d, losing its electron first
• METALS: 1-3 outer shell
• transition metal ions with +3 tend to be POLARISING, have a HIGH CHARGE Density and
Alkaline
metals vigorously
be * electrons, low IE, low
pull on electrons
-react Het d
electronegativities (due to
-




-
S
with halogens
h A
delocalised electrons COMPLEX IONS
• NON-METALS: 4-7 electrons in • central metal ion + ligand
h T character 8 outer shell, high electronegativity, • LIGAND: a molecule or ion that form complexes which consist of a central metal ion and ligands
E
+ E & high EA (tendency to share —> LEWIS BASE, NUCLEOPHILE
non-metallic
S -'

W

: character - i P
5


electrons and form covalent bonds • CO-ORDINATION NUMBER: number of co-ordinate bonds to the central metal atom or ion

r - • NAMING COMPLEXES: prefix for number of ligands/ligands name/element/oxidation number
metallic
8
OXIDES:
-
d e • Na and Mg oxides are basic
V
=
• Al oxides are amphoteric CATALYTIC PROPERTIES
#
• Si to Cl oxides are acidic
• can catalyse certain REDOX REACTIONS —> can be readily oxidised and reduced
*
* • HETEROGENOUS catalyst has a different physical state (phase) from the reactants
atomic radius
# • HOMOGENOUS catalyst is the same physical state (phase) as the reactants

ELECTRON AFFINITY • BIOLOGICAL catalysts
ATOMIC RADIUS
• distance between nucleus of an atom & outermost electron shell • amount of energy released when 1 mole of
electrons is gained by 1 mole of atoms of gaseous MAGNETIC PROPERTIES
• ACROSS A GROUP: nuclear charge increases = greater pull
state to form gaseous ion (- charge) • DIAMAGNETISM: the property of all materials and produces a very weak opposition to an
• DOWN A GROUP: increase in number of shells, increase in
• first EA = exothermic applied magnetic field —> from repulsion of electrons to the applied magnetic field, create a tiny
shielding, weak pull
• second EA = endothermic (overcoming repulsion magnetic dipole

between electrons and - ion) • PARAMAGENTISM: only occurs in substances which have unpaired electrons, produces
IONIC RADIUS
magnetism proportional to the applied field in the same direction
• measure of size of an ion
• FERROMAGNETISM: the alignment of the unpaired electrons in an external field can be
• DOWN A GROUP = increases ELECTRONEGATIVITY
retained so that material becomes permanently magnetised
• ACROSS A PERIOD: ionic radii increases with an increase • the ability of an atoms to attract a pair for electrons
in - charge, ionic radii decreases with an increase in + charge towards itself in a covalent bond
COLOURED COMPOUNDS:
• arises form the + nucleus ability to attract - charged
• d-block elements have unpaired electrons
electrons
IONISATION ENERGY • the d-orbitals are split into two energy levels
• PAULING SCALE - assigned electronegativity value
• DOWN A GROUP= increase in nuclear charge, increase in • electrons can transition between these energy levels
• FLUORINE most electronegative
shells, increase in shielding, increase in atomic radius, • in the meantime they can absorb energy form light at a visible wavelength and thus, one can
• DOWN A GROUP = negligible nuclear charge increase,
electrons held more loosely observe the complimentary colour
increase in shielding, increase in atomic radius, decrease
• ACROSS A PERIOD = increase in nuclear charge, shells
in attraction of nucleus and electron
remain the same, shielding remains constant, decrease in
atomic radius, electrons held more tightly
$3.61
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
parmisyahoo

Get to know the seller

Seller avatar
parmisyahoo Vrije Universiteit Amsterdam
Follow You need to be logged in order to follow users or courses
Sold
0
Member since
1 year
Number of followers
0
Documents
12
Last sold
-

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions