100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
College aantekeningen

Notes lectures Innovation, Behaviour, Emergence and Markets (IBEM) (AM_1052)

Beoordeling
-
Verkocht
-
Pagina's
13
Geüpload op
08-06-2024
Geschreven in
2023/2024

These are notes from all the lectures given for the course Innovation, Behaviour, Emergence and Markets (IBEM). This is also exam material.

Instelling
Vak









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
8 juni 2024
Aantal pagina's
13
Geschreven in
2023/2024
Type
College aantekeningen
Docent(en)
Trust saidi
Bevat
Alle colleges

Onderwerpen

Voorbeeld van de inhoud

Lecture 1 - 08/01 - Innovation, Behaviour, Emergence and Markets
IBEM is based on solid transdisciplinary science and it is anchored on Complex Adaptive
Systems (CAS) theory → theory of CAS not only combines, but merges models and views from
different scientific disciplines, such as game theory, psychology, network theory and sociology.
Complex Adaptive System (CAS) = a group of semi-autonomous agents who interact in
interdependent ways to produce system-wide patterns, such that those patterns
then influence the behaviour of the agents (picture right).
→ dynamic and interactive system composed of multiple agents or components that
adapt to their environment based on local interactions → these systems are
characterised by non-linear dynamics, emergence and the capacity for
self-organisation → concept of equilibrium points becomes particularly interesting.
→ informs our understanding of how some of the patterns emerge as dominant
over others and how other patterns may be diminished or eradicated.
→ system in which many interdependent elements or agents interact, leading to emergent
outcomes that are often difficult (or impossible) to predict simply by looking at the individual
interactions → complex; difficult to understand or difficult to predict -> dynamic; moving,
changing -> adaptive; changing to adapt to an environment or condition.
→ elements CAS:
- Consists of several heterogeneous agents, that each make decisions about how to behave
→ the most important dimension is that those decisions will evolve over time.
- Agents interact with each other, which leads to…
- …emergence, in a real way, the whole becomes greater than the sum of the parts → key
issue is that you cannot really understand the whole system simply by looking at
individual parts.
→ example: ant colony, where each ant has a decision role (foraging, midden work), and also
interacts with other ants → a lot of that is local interaction → what
emerges from their behaviour is the ant colony.
→ basic features: heterogeneous agents, interaction and an emergent
global system → are consistent across domains (picture left).
System = collection of interconnected and interdependent elements or
agents that exhibit complex behaviour through adaptive processes → are
characterised by their dynamic nature, non-linear interactions and the
ability to self-organise in response to changes in their environment → types of systems: simple,
complicated, non-linear (chaotic), CAS (non-linear and CAS are dynamic).
Reductionism = understand a system completely if you know the properties of all its things →
CAS is partly unpredictable, shows emergence, and is irrational, even if you know all things.
→ simple systems: well-ordered, predictable cause-effect - relations are simple and stable -
input-output relations are simple - things are simple and few - easy to repair - structure and
functions are clear → FEX. a bicycle is easy to understand.
→ complicated systems: things are many and can be complex - relations are manyfold and diverse
- difficult to design and repair (need experts) - structures and functions are partly hidden -
engineered → FEX. an airplane is overwhelming for people who are not trained to understand it.
→ non-linear (complex) systems: continuously changing - unpredictable - many things, but no
thinking or adaptation - input-output relations are unclear - butterfly effect = small change may
cause a large effect - difficult to control and change - non-linear (no clear and stable cause and
effect relations) → FEX. the weather continuously changes and birds’ coordination (not a single

, boss, but distributed control, no script prescribing actions of the flock, simple rules; avoid hitting
each other, align flight to match neighbours and fly an average distance from each other).
→ CAS: many things (actors/agents), connected in a network (building blocks) - adaptive
(capacity to change due to feedback or memory) - details are unpredictable, but general laws
exist (open systems that continuously interacts with its environment) - constant change (no fixed
equilibrium) (show emergence, connectivity creates new property) - has multiple equilibria and
changing patterns (constant input of energy to maintain the organisation of the system, which is
essential for emergence).
Characteristics CAS: leaderless - emergent patterns - self-organising (pattern emerges as a result
of the agents following simple rules without external control or a leader) - feedback loops
(circular process in which the systems’ output is fed back to the input) - adaptive (to changes) -
chaotic (small changes can generate large changes in the systems’ outcome) - stochastic
(governed by chance, randomness in movements and interactions).
How do CAS react to change? → sometimes a small change may have a large effect OR the system
is resistant (resilient) against a disturbance → evolution and specialisation of the actors.
CAS examples: ecosystem - healthcare system - city - organisations (like hospitals) - markets
(business ecosystem) - artificial systems - gut (digestive system).
Visible properties CAS: diversity/specialisation of actors -> actors change behaviour (genes and
learning) -> flows (food chains, info, water) -> groups of actors (animals aggregate and cooperate)
-> building blocks (things that are successful can be copied, combined and re-used, a business
model, antibiotic, DNA sequences, vaccine) -> boundaries that are permeable -> adaptation and
behavioural changes (learning) -> tags = visible code to easily identify an actor -> struggle and
survival (competition between actors) -> reward mechanisms (determine actor behaviour) ->
strategies (actors think how they can do better/survive).
→ adaption + rewards + strategies = selection (failure of the weakest, success of the fittest),
inequality (unfair, rich and poor), and continuous change (a CAS is unpredictable).
Example hospital: doctors specialise - different professions (tags) - competition in private
hospitals to provide better services compared to other institutions - reward mechanisms.
Invisible properties CAS: CAS have several equilibrium points -> can switch between these by
passing through a transition point -> perturbations (big/small events) may cause a jump to a new
equilibrium point (revolution → FEX. new organisational structure, collapse of ecosystem,
epidemic disease) -> cause-effect relations are non-linear (cannot calculate the effect of a
change, even if you know everything about the actors, no simple cause-effect relation).
→ non-linearity = a small change may cause no effect (stability), unexpected effect (emergence)
or a large effect (across a transition point) → a large change may cause no effect (resilience,
stability, adaptation), a minor local effect, unexpected effect (emergence) or a large effect (across
a transition point, leading to a new equilibrium) → FEX. a small nucleotide change in DNA results
in the very rare Kleefstra syndrome.
Hidden order:
- Internal models: an actor’s model of its environment in a form that describes how to
behave → to be adaptive you need something that remembers what you did and how it
worked → internal model is the carrier of adaptivity → can change by coincidence
(mutation), design (programming) and learning from experiences → helps its owner to
survive, because the actor reacts better next time (learning) → vary from very simple to
very complicated → social rules in your head (how to behave and what is normal?).
- FEX. the brain (behaviour), DNA, text (recipe, business plan), software/algorithm
(AI) → example: medical protocol -> if symptom 1, then treatment 1.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
yaralangeveld Vrije Universiteit Amsterdam
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
361
Lid sinds
8 jaar
Aantal volgers
180
Documenten
119
Laatst verkocht
17 uur geleden
Samenvattingen NW&I (Universiteit Utrecht) en MPA (VU Amsterdam)

Ik ben een enthousiaste student die graag zelf goede samenvattingen maakt voor tentamens over diverse vakken van innovatie en natuurwetenschappen. Deze wil ik graag met jou delen, zodat jij je ook optimaal kunt voorbereiden op tentamens! Groetjes!

3.9

36 beoordelingen

5
12
4
14
3
6
2
2
1
2

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen