100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary IRM (introduction to research in marketing) spring

Beoordeling
4.0
(1)
Verkocht
16
Pagina's
40
Geüpload op
07-06-2019
Geschreven in
2018/2019

Summary IRM spring (book lectures)

Instelling
Vak










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
7 juni 2019
Bestand laatst geupdate op
7 juni 2019
Aantal pagina's
40
Geschreven in
2018/2019
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

INTRO TO MARKETING RESEARCH
1. INTRODUCTION (LECTURE)
Course objectives: develop..

 Knowledge:
o Theoretical: be able to describe objectives and principles, test assumptions, and interpret
outcomes of multivariate methods dealt with in the course
o Marketing: be able to identify methods useful to solve a given marketing problem, and assess
managerial implications
 Skills: be able to apply multivariate methods/solve marketing problems using SPSS

HBBA: CHAPTER 1

1.1 Defining Multivariate Analysis

HBBA: ‘Broadly speaking, it refers to all statistical methods that simultaneously analyze multiple measurements
on each individual or object under investigation’

Multiple measurements  measure different types of variables.

1.2 Some Basic Concepts

Measurement scales:

 Nonmetric scales:
o Nominal  Characteristics: unique definition/identification classification. Phenomena: e.g.
brand name, gender, student ANR. Appropriate Methods of Analysis/Statistics: e.g. %, Chi
square test. Example: Shampoo Brand Identification: Pantene 1, Elvive 2, Etos 3
o Ordinal  Characteristics: indicate ‘order’, sequence. Phenomena: e.g. preference ranking,
level of education (ranking  1 is more than the other). Appropriate methods of
analysis/statistics: percentiles, median (in the middle), rank correlation + all previous statistics.
Example: Shampoo Brand Preference  Etos 3 (least preferred) < Elvive 2 < Pantene 1
 Example: Shopping frequency


= ordinal scale gives you one unit difference. 3th column: actual frequency.
Ordinal scale tells you which one is more or less, but not how much more or less.



Metric scales:

 Interval  Characteristics: arbitrary origin. Phenomena: e.g. attribute scores, price index. Appropriate
Methods of analysis: arithmetic average, range, standard deviation, product-moment correlation, +
previous methods. Example: Shampoo Brand Quality score  Pantene 95, Elvive 90, Etos 49. Lowest =
0, highest = 100.  Gives an ordering. But we can see how much the differences are. With ordinal data,
you didn’t know that.
 Ratio  Characteristics: unique origin. Phenomena: e.g. age, cost, number of customers. Appropriate
methods of analysis: geometric average, coefficient of variation, + all previous methods. Example:
Shampoo Brand Price  Pantene 3.75, Elvive 4.66, Etos 2.89 (Euros/300ml)
o Difference between interval and ratio? Zero = zero, clear what zero means (ratio)  unique
origin.

Errors: Reliability and Validity

 Reliability: is the measure ‘consistent’ correctly registered

1

,  Validity: does the measure capture the concept it is supposed to measure?

Statistical Significance and Power

 Hypothesis testing  to examine differences. We use samples and never examine the complete
population, which can result in:

o Type I error () = probability of test showing
statistical significance when it is not present
(‘false positive’). In reality no different, test tells
you that there is a difference. (We focus on alfa!!
Alpha not higher than 5%)
o Power (1-) = probability of test showing
statistical significance when it is present. There
was a difference in reality, but your test told you
it wasn’t.
 Suppose that the truth is ‘no difference’: what
would error-free population measure, lead to?



= population difference 0  no difference




 Suppose that the truth is: ‘no difference’: what would sample measures, with error, lead to?


= if I move the cut-off value to the right, the alpha will decrease, and
thus the type I error risk is getting lower. You want to prevent type I
error (but change type 2 error increases).




 Power  probability that if there is an effect in reality and you also find an affect.
o Power depends on:
  (+)  larger alpha = larger power
 Effect size (+)  larger effect size = larger power (effect size = what you want to
measure  size of correlation (for example between advertising and sales)).
 Sample Size n (+)  larger sample = larger power
o Implications:
 Anticipate consequences of , effect and n
 Assess/incorporate power when interpreting results

1.3 Types of Multivariate Methods: Dependence or Interdependence techniques

Dependence techniques:

 One or more variables can be identified as dependent variables and the remaining as independent
variables.
 Choice of dependence techniques depends on the number of DV’s involved in analysis.

Interdependence techniques:

 Whole set of interdependent relationships is examined


2

,  Further classified as having focus on variable or objects




HBBA CHAPTER 2: PRELIMINARY DATA ANALYSIS AND DATA PREPARATION

EXAM: Whatever is mention in the slides, you have to learn it in HS2, here it is very brief, but no new things.
Example  “what does missing at random mean”….

2.1 Conduct preliminary analysis: graphical inspection and simple analysis

Why?

 Get a feel for data
 Suggest possible problems (and remedies) in next steps

How?

 Univariate profiling
 Bivariate analysis

2.2 Detect outliers

What are outliers? “Observations with a unique combination of characteristics
identifiable as distinctly different from the other observations”

Outliers:

 There are two basic types of outliers:
o ‘Good’: true value (probably) – not errors/mistakes, real values that gives variation.
o ‘Bad’: something is wrong? ( in many cases)
 To distinguish these types, one should investigate the causes
o Procedural error
o Exceptional circumstances (Cause known or unknown)


3

Beoordelingen van geverifieerde kopers

Alle reviews worden weergegeven
4 jaar geleden

4.0

1 beoordelingen

5
0
4
1
3
0
2
0
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
Willems2803 Tilburg University
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
156
Lid sinds
10 jaar
Aantal volgers
127
Documenten
2
Laatst verkocht
1 jaar geleden

3.9

23 beoordelingen

5
7
4
9
3
6
2
0
1
1

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen