Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Examen

Test Bank For Introductory Econometrics: A Modern Approach, 7th Edition By Jeffrey M. Wooldridge | VERIFIED.

Note
-
Vendu
-
Pages
137
Grade
A+
Publié le
20-05-2024
Écrit en
2023/2024

Test Bank For Introductory Econometrics: A Modern Approach, 7th Edition By Jeffrey M. Wooldridge | VERIFIED. Nonexperimentalidataisicalled . a. cross-sectionalidata b. timeiseriesidata c. observationalidata d. panelidata Answer:ib iDifficulty:iEasy Bloom’s:iKnowledge A-Head:iWhatis iEconometrics?BUSPROG: i Feedback: 3. Whichiofitheifollowingisitrueiofiexperimentalidata? a. Experimentalidataiareicollectedinilaboratoryienvironmentsinitheinaturalisciences. b. Experimentalidataicannotibeicollectediniaicontrolledienvironment. c. Experimentalidataisisometimesicallediobservationalidata. d. Experimentalidataisisometimesicallediretrospectiveidata. Answer:ia iDifficulty:iEasy Bloom’s:iKnowledge A-Head:iWhatisiEconometrics? BUSPROG: Feedback: 4. Aniempiricalianalysisireliesion toitestiaitheory. a. commonisense b. ethicaliconsiderations c. data d. customsiandiconventions Answer:ic iDifficulty:iEasy Bloom’s:iKnowledge A-Head:iStepsiniEmpiricaliEconomic iAnalysisBUSPROG: i Feedback:iAniempiricalianalysisireliesionidataitoitestiaitheory. 5. Theitermi‘u’iinianieconometricimodelisiusuallyireferreditoiasithe . a. erroriterm b. parameter c. hypothesis d. dependentivariable Answer:ia iDifficulty:iEasy Bloom’s:iKnowledge A-Head:iStepsiniEmpiricaliEconomic iAnalysisBUSPROG: i Feedback:iTheitermiuiinianieconometricimodeliisicalleditheierroritermioridisturbanceiterm. 6. Theiparametersiofianieconometricimodel . a. includeialliunobservedifactorsiaffectingitheivariableibeingistudied b. describeitheistrengthiofitheirelationshipibetweenitheivariableiunderistudyianditheifactorsiaffectingiit c. referitoitheiexplanatoryivariablesincludedinitheimodel d. referitoitheipredictionsithaticanibeimadeiusingitheimodel Answer:ib iDifficulty:iEasy Bloom’s:iKnowledge A-Head:iStepsiniEmpiricaliEconomic iAnalysisBUSPROG: i Feedback:iTheiparametersiofianieconometricimodelidescribeitheidirectioniandistrengthiof itherelationship i ibetweenitheivariableiunderistudyianditheifactorsiaffectingiit. 7. Whichiofitheifollowingiisitheifirstistepiiniempiricalieconomicianalysis? a. Collectioniofidata b. Statementiofihypotheses c. Specificationiofianieconometricimodel d. Testingiofihypotheses Answer:ic iDifficulty:iEasy Bloom’s:iKnowledge A-Head:iStepsiniEmpiricaliEconomic iAnalysisBUSPROG: i Feedback:iTheifirstistepiiniempiricalieconomicianalysisisitheispecificationiofitheieconometricimodel. 8. Aidataisetithaticonsistsiofiaisampleiofiindividuals,ihouseholds,ifirms,icities,istates,icountries,ior iavariety i iofiotheriunits,itakeniatiaigivenipointiinitime,iisicalledia(n) . a. cross-sectionalidataiset b. longitudinalidataiset c. timeiseriesidataiset d. experimentalidataiset Answer:ia iDifficulty:iEasy Bloom’s:iKnowledge A-Head:iTheiStructureiofiEconomic iDataBUSPROG: i Feedback:iAidataisetithaticonsistsiofiaisampleiofindividuals,ihouseholds,ifirms,icities,istates,icountries,ori iaivarietyiofiotheriunits,itakeniatiaigivenipointiinitime,iisicallediaicross-sectionalidataiset. 9. Dataionitheiincomeiofilawigraduatesicollectediatidifferentitimesiduringitheisameiyearis . a. panelidata b. experimentalidata c. timeiseriesidata d. cross-sectionalidata Answer:id iDifficulty:iEasy Bloom’s:iApplication A-Head:iTheiStructureiofiEconomic iDataBUSPROG: i iAnalytic Feedback:iAidataisetithaticonsistsiofiaisampleiofindividuals,ihouseholds,ifirms,icities,istates,icountries,ori iaivarietyiofiotheriunits,itakeniatiaigivenipointiinitime,iisicallediaicross-sectionalidataiset. iTherefore,data i ionitheiincomeiofilawigraduatesioniaiparticulariyeariareiexamplesioficross-sectionalidata. 10. Aidataisetithaticonsistsiofiobservationsioniaivariableioriseveralivariablesioveritimeiisicallediai i dataiset. a. binary b. cross-sectional c. timeiseries d. experimental Answer:ic iDifficulty:iEasy Bloom’s:iKnowledge A-Head:iTheiStructureiofiEconomic iDataBUSPROG: i Feedback:iAitime-seriesidataiseticonsistsiofiobservationsioniaivariableioriseveralivariablesioveritime. 11. Whichiofitheifollowingiisianiexampleiofitimeiseriesidata? a. Dataionitheiunemploymentiratesinidifferentipartsiofiaicountryiduringiaiyear. b. Dataionitheiconsumptioniofiwheatibyi200ihouseholdsiduringiaiyear. c. Dataionitheigrossidomesticiproductiofiaicountryioveriaiperiodiofi10iyears. d. Dataionitheinumberiofivacanciesinivariousidepartmentsiofianiorganizationioniaiparticularimonth. Answer:ic iDifficulty:iEasy Bloom’s:iApplication A-Head:iTheiStructureiofiEconomic iDataBUSPROG: i iAnalytic Feedback:iAitime-seriesidataiseticonsistsiofiobservationsioniaivariableioriseveralivariablesiover time.iTherefore,idataionitheigrossidomesticiproductiofiaicountryioveriaiperiodiofi10iyearsisianiexampleofi itimeiseriesidata. 12. Whichiofitheifollowingirefersitoipanelidata? a. Dataionitheiunemploymentirateiiniaicountryioveriai5-yeariperiod b. Dataionitheibirthirate,ideathirateiandipopulationigrowthirateinidevelopingicountriesioveriai10- yearperiod. i c. Dataionitheincomeiofi5imembersiofiaifamilyioniaiparticulariyear. d. Dataionitheipriceiofiaicompany’sishareiduringiaiyear. Answer:ib iDifficulty:iEasy Bloom’s:iApplication A-Head:iTheiStructureiofiEconomic iDataBUSPROG: i iAnalytic Feedback:iAipanelidataiseticonsistsiofiaitimeiseriesiforieachicross-sectionalimemberiinitheidataiset. iTherefore,idataionitheibirthirate,ideathirateiandinfantimortalityirateinidevelopingicountriesioveriai10-year i iperiodirefersitoipanelidata. 13. Whichiofitheifollowingiisiaidifferenceibetweenipaneliandipooledicross-sectionalidata? a. Aipanelidataiseticonsistsiofidataionidifferenticross-sectionaliunitsioveriaigiveniperiodiofitimeiwhile iapooled i idataiseticonsistsiofidataionitheisameicross-sectionaliunitsioveriaigiveniperiodiofitime. b. Aipanelidataiseticonsistsiofidataionitheisameicross-sectionaliunitsioveriaigiveniperiodiofitimeiwhile iapooled i idataiseticonsistsiofidataionidifferenticross-sectionaliunitsioveriaigiveniperiodiofitime c. Aipanelidataiconsistsiofidataioniaisingleivariableimeasurediatiaigivenipointiinitimeiwhileiaipooled idataset i iconsistsiofidataionitheisameicross-sectionaliunitsioveriaigiveniperiodiofitime. d. Aipanelidataiseticonsistsiofidataioniaisingleivariableimeasurediatiaigivenipointiinitimeiwhileia ipooleddata i iseticonsistsiofidataionimoreithanioneivariableiatiaigivenipointiinitime. Answer:ib iDifficulty:iEasy Bloom’s:iKnowledge A-Head:iTheiStructureiofiEconomic iDataBUSPROG: i Feedback:iAipanelidataiseticonsistsiofidataionitheisameicross-sectionaliunitsioveriaigiveniperiodiof itimewhile i iaipooledidataiseticonsistsiofidataionitheisameicross-sectionaliunitsioveriaigiveniperiodiofitime. 14. i hasiaicausalieffection . a. Income;iunemployment b. Height;ihealth c. Income;iconsumption d. Age;iwage Answer:ic Difficulty: iModerateBloom’s: i iApplication A-Head:iCausalityianditheiNotioniofiCeterisiParibusiniEconometric iAnalysisBUSPROG: i iAnalytic Feedback:iIncomeihasiaicausalieffectioniconsumptionibecauseianiincreaseiniincomeileadsitoianincrease i iiniconsumption. 15. Whichiofitheifollowingiisitrue? a. Aivariableihasiaicausalieffectionianotherivariableiifibothivariablesincreaseior idecreasesimultaneously. i b. Theinotioniofi‘ceterisiparibus’iplaysianimportantiroleinicausalianalysis. c. Difficulty ininferringicausalityidisappearsiwhenistudyingidataiatifairlyihighilevelsiofiaggregation. d. Theiproblemiofinferringicausalityiarisesifiexperimentalidataiisiusediforianalysis. Answer: i b iDifficulty:iModerate Bloom’s:iKnowledge A-Head:iCausalityianditheiNotioniofiCeterisiParibusiniEconometric iAnalysisBUSPROG: i Feedback:iTheinotioniofi‘ceterisiparibus’iplaysianimportantiroleinicausalianalysis. 16. Experimentalidataiareisometimesicallediretrospectiveidata. Answer:iFalse iDifficulty:iEasy iBloom’s:iKnowledge A-Head:iWhatis iEconometrics?BUSPROG: i Feedback:iNonexperimentalidataiareisometimesicallediretrospectiveidata. 17. Anieconomicimodeliconsistsiofimathematicaliequationsithatidescribeivariousirelationships ibetweeneconomic i ivariables. Answer:iTrue iDifficulty:iEasy iBloom’s:iKnowledge A-Head:iStepsiniEmpiricaliEconomic iAnalysisBUSPROG: i Feedback:iAnieconomicimodeliconsistsiofimathematicaliequationsithatidescribeivarious irelationshipsbetween i ieconomicivariables. 18. Aicross-sectionalidataiseticonsistsiofiobservationsioniaivariableioriseveralivariablesioveritime. Answer:iFalse iDifficulty:iEasy iBloom’s:iKnowledge A-Head:iTheiStructureiofiEconomic iDataBUSPROG: i Feedback:iAitimeiseriesidataiseticonsistsiofiobservationsioniaivariableioriseveralivariablesiovertime. i 19. Aitimeiseriesidataiisialsoicallediailongitudinalidataiset. Answer:iFalse iDifficulty:iEasy iBloom’s:iKnowledge A-Head:iTheiStructureiofiEconomic iDataBUSPROG: i Feedback:iAitimeiseriesidataiisialsoicallediailongitudinalidataiset. 20. Theinotionioficeterisiparibusimeansi“otherifactorsibeing iequal.”Answer: i iTrue Difficulty:iEasy iBloom’s:iKnowledge A-Head:iCausalityianditheiNotioniofiCeterisiParibusiniEconometric iAnalysisBUSPROG: i Feedback:iTheinotionioficeterisiparibusimeansi“otherifactorsibeingiequal.” Chapteri2 1. Aidependentivariableiisialsoiknowniasia(n) . a. explanatoryivariable b. controlivariable c. predictorivariable d. responseivariable Answer:id iDifficulty:iEasy Bloom’s:iKnowledge A-Head:iDefinitioniofitheiSimpleiRegression iModelBUSPROG: i Feedback:iAidependentivariableiisiknowniasiairesponseivariable. 2. Ifiaichangeiinivariableixicausesiaichangeiinivariableiy,ivariableixiisicalledithe . a. dependentivariable b. explainedivariable c. explanatoryivariable d. response ivariableAnswer: i ic Difficulty:iEasy Bloom’s:iComprehension A-Head:iDefinitioniofitheiSimpleiRegression iModelBUSPROG: i Feedback:iIfiaichangeiinivariableixicausesiaichangeinivariableiy,ivariableixiisicalleditheiindependentvariable i ioritheiexplanatoryivariable. 3. Initheiequationiyi= β0 + β1 i i i i ixi+iu, β0 isithe . a. dependentivariable b. independentivariable c. slopeiparameter d. interceptiparameter Answer:id iDifficulty:iEasy Bloom’s:iKnowledge A-Head:iDefinitioniofitheiSimpleiRegression iModelBUSPROG: i Feedback:iInitheiequationiyi= β0 + β1 i i i i ixi+iu, β0 isitheinterceptiparameter. 4. Initheiequationiyi= β0 + β1 i i i i ixi+iu,iwhatiisitheiestimatedivalueiofi i i β0 i i i i ? a. ´y−β ^ 1 ix´ b. ´y+i βi 1 ix´ y iyi−i ´ ¿ ¿ ¿ c. (xi i−´x)¿i n ∑¿ i=1 ¿ n d. ∑xyi i=1 Answer:ia iDifficulty:iEasy Bloom’s:iKnowledge 0 1 1 A-Head:iDerivingitheiOrdinaryiLeastiSquares iEstimatesBUSPROG: i Feedback:iTheiestimatedivalueiof β0 is ´y−β ^ 1 ix´ . 5. Initheiequationici= β0 + β1 i i i i i ii+iu,icidenotesiconsumptioniandi idenotesiincome.iWhatiisithe residualiforithei5 th iobservationif c5 i i i i i=$500 iand a.i$975 b.i$300 c.i$25 d.i$50 c^5 i i i i i=$475? Answer:ic iDifficulty:iEasy Bloom’s:iKnowledge A-Head:iDerivingitheiOrdinaryiLeastiSquares iEstimatesBUSPROG: i Feedback:iTheiformulaiforicalculatingitheiresidualiforithei th iobservationis u^i=yi i i−^yi i i i i i .iInithisicase, theiresidualiis u^5=c5 i−c^5 =$500i-$475=i$25. 6. Whatidoesitheiequation ^y=β ^ 0+i βi ^ 1 ix denoteiifitheiregressioniequationiisiyi=iβi i+iβ ixi i+iu? a. Theiexplainedisumiofisquares b. Theitotalisumiofisquares c. Theisampleiregressionifunction d. Theipopulationiregressionifunction Answer:ic iDifficulty:iEasy Bloom’s:iKnowledge A-Head:iDerivingitheiOrdinaryiLeastiSquares iEstimatesBUSPROG: i Feedback:iTheiequation ^y=β ^ 0+i βi ^ 1 ix denotesitheisampleiregressionifunctioniofitheigiveniregression model. 7. Consideritheifollowingiregressionimodel:iyi=iβ0 i+iβ1x1 i+iu.iWhichiofitheifollowingiisiaiproperty iofOrdinary i iLeastiSquarei(OLS)iestimatesiofithisimodelianditheiriassociatedistatistics? a. Theisum,iandithereforeitheisampleiaverageiofitheiOLSiresiduals,iisipositive. i i i i b. TheisumiofitheiOLSiresidualsiisinegative. c. TheisampleicovarianceibetweenitheiregressorsianditheiOLSiresidualsisipositive. d. Theipointi(i i i i x´ , ´yi i i)ialwaysiliesionitheiOLSiregressioniline. Answer:id iDifficulty:iEasy Bloom’s:iKnowledge A-Head:iPropertiesiofiOLSioniAnyiSampleiofiDataBUSPROG: i Feedback:iAniimportantipropertyiofitheiOLSiestimatesisithatitheipointi( , y´ )ialwaysiliesionithe OLSiregressioniline.iIniotheriwords,iif x=´xi i i ,itheipredictedivalueiof yisi i´yi i i . 8. Theiexplainedisumiofisquaresiforitheiregressionifunction, yi=β0 i+βi 1 i x1+ui 1 i i i i ,iisidefinedias . n ∑(yi i−´i y)i 2 i=1 n ∑(yi i−^y)i 2 i=1 n c. ∑ui^i i=1 n ∑(u i) 2 i=1 Answer:ib iDifficulty:iEasy Bloom’s:iKnowledge A-Head:iPropertiesiofiOLSioniAnyiSampleiof iDataBUSPROG: i Feedback:iTheiexplainedisumiofisquaresisidefinedias n ∑(yi i−^y)i 2 i=1 9. Ifitheitotalisumiofisquaresi(SST)iiniairegressioniequationiisi81,ianditheiresidualisumiofisquaresi(SSR) iis25, i iwhatiisitheiexplainedisumiofisquaresi(SSE)? a. 64 b. 56 a. b. d. Thank you, EMAIL ME @ For help with Assignments/Essay/Projects/Test Banks/practice Exams and any other classwork. c. 32 d. 18 Answer: i b iDifficulty:iModerate Bloom’s:iApplication A-Head:iPropertiesiofiOLSioniAnyiSampleiof iDataBUSPROG: i iAnalytic Feedback:iTotalisumiofisquaresi(SST)iisigivenibyitheisumiofiexplainedisumiofisquaresi(SSE)iandiresidualsumi iofisquaresi(SSR).iTherefore,iinithisicase,iSSE=81-25=56. 10. Ifitheiresidualisumiofisquaresi(SSR)iiniairegressionianalysisiisi66ianditheitotalisumiofisquaresi(SST) iisequal i itoi90,iwhatiisitheivalueiofitheicoefficientiofidetermination? a.i0.73 b.i0.55 c.i0.27 d.i1.2 Answer:ic Difficulty: iModerateBloom’s: i iApplication A-Head:iPropertiesiofiOLSioniAnyiSampleiofiDataBUSPROG: i iAnalytic Feedback:iTheiformulaiforicalculatingitheicoefficientiofideterminationis R 2=1−i 66i =0.27 90 R 2=1−i SSR SST .iInithisicase, 11. Whichiofitheifollowingiisiainonlineariregression imodel?a. i iyi=iβ0 i+iβ1x 1/2 i+iu yi=iβ0 i+iβ1logixi+u =i1i/i(β0 i+iβ1x)i+iu =iβ0 i+iβ1xi+iu Answer:ic Difficulty:iModerate iBloom’s:iComprehension A-Head:iPropertiesiofiOLSioniAnyiSampleiof iDataBUSPROG: i Feedback:iAiregressionimodeliisinonlineariifitheiequationiisinonlinearinitheiparameters.iInithisicase,y=1 i i/i(β0 i+iβ1x)i+iuiisinonlineariasiitiisinonlineariiniitsiparameters. 12. WhichiofitheifollowingiisiassumediforiestablishingitheiunbiasednessiofiOrdinaryiLeastiSquare i(OLS)estimates? i a. Theierroritermihasianiexpectedivalueiofi1igivenianyivalueiofitheiexplanatoryivariable. b. Theiregressioniequationiisilinearinitheiexplainediandiexplanatoryivariables. c. Theisampleioutcomesionitheiexplanatoryivariableiareiallitheisameivalue. d. Theierroritermihasitheisameivarianceigivenianyivalueiofitheiexplanatoryivariable. Answer:id iDifficulty:iEasy Bloom’s:iKnowledge A-Head:iExpectediValuesiandiVariancesiofitheiOLS iEstimatorsBUSPROG: i Feedback:iTheierroriuihasitheisameivarianceigivenianyivalueiofitheiexplanatoryivariable. 13. Theierroritermiiniairegressioniequationiisisaiditoiexhibitihomoskedastictyif . a. itihasizeroiconditionalimean b. itihasitheisameivarianceiforiallivaluesiofitheiexplanatoryivariable. c. itihasitheisameivalueiforiallivaluesiofitheiexplanatoryivariable d. ifitheierroritermihasiaivalueiofioneigivenianyivalueiofitheiexplanatoryivariable. Answer:ib iDifficulty:iEasy Bloom’s:iKnowledge A-Head:iExpectediValuesiandiVariancesiofitheiOLS iEstimatorsBUSPROG: i Feedback:iTheierroriterminiairegressioniequationiisisaiditoiexhibitihomoskedastictyifiitihasithe isamevariance i iforiallivaluesiofitheiexplanatoryivariable. 14. Initheiregressioniofiyionix,itheierroritermiexhibitsiheteroskedasticityiif . a. itihasiaiconstantivariance b. Var(y|x)iisiaifunctioniofix c. xiisiaifunctioniofiy d. yiisiaifunctioniofix Answer:ib iDifficulty:iEasy Bloom’s:iKnowledge A-Head:iExpectediValuesiandiVariancesiofitheiOLS iEstimatorsBUSPROG: i i i i n Feedback:iHeteroskedasticityisipresentiwheneveriVar(y|x)isiaifunctioniofixibecauseiVar(u|x)i=iVar(y|x). 15. Whatiisitheiestimatedivalueiofitheislopeiparameteriwhenitheiregressioniequation,iyi=iβ0 i+iβ1x1 i+ iupasses i ithroughitheiorigin? n a. ∑yi i i=1 y ¿ ¿ b. ¿ ) ∑¿ i=1 n ∑xi i i iyi i=1 c. n ∑xi i 2 i=1 n ∑(yi i−´i y)i 2 i=1 Answer:ic iDifficulty:iEasy Bloom’s:iKnowledge A-Head:iRegressionithroughitheiOriginiandiRegressionionia iConstantBUSPROG: i Feedback:iTheiestimatedivalueiofitheislopeiparameteriwhenitheiregressioniequationipassesithroughithe originiis n ∑xi i iyi i=1 in . ∑xi i 2 i=1 16. Ainaturalimeasureiofitheiassociationibetweenitwoirandomivariablesisitheicorrelationicoefficient. Answer:iTrue iDifficulty:iEasy iBloom’s:iKnowledge A-Head:iDefinitioniofitheiSimpleiRegression iModelBUSPROG: i d. Feedback:iAinaturalimeasureiofitheiassociationibetweenitwoirandomivariablesisitheicorrelationcoefficient. i 17. TheisampleicovarianceibetweenitheiregressorsianditheiOrdinaryiLeastiSquarei(OLS)iresiduals iisalways i ipositive. Answer:iFalse iDifficulty:iEasy iBloom’s:iKnowledge A-Head:iPropertiesiofiOLSioniAnyiSampleiof iDataBUSPROG: i Feedback:iTheisampleicovarianceibetweenitheiregressorsianditheiOrdinaryiLeastiSquarei(OLS)iresidualsisi izero. 18. R 2 isitheiratioiofitheiexplainedivariationicompareditoitheitotalivariation. Answer:iTrue iDifficulty:iEasy iBloom’s:iKnowledge A-Head:iPropertiesiofiOLSioniAnyiSampleiof iDataBUSPROG: i Feedback:iTheisampleicovarianceibetweenitheiregressorsianditheiOrdinaryiLeastiSquarei(OLS)iresidualsisi izero. 19. Thereiarein-1idegreesiofifreedominiOrdinaryiLeastiSquareiresiduals

Montrer plus Lire moins
Établissement
Introductory Econometrics
Cours
Introductory Econometrics











Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Établissement
Introductory Econometrics
Cours
Introductory Econometrics

Infos sur le Document

Publié le
20 mai 2024
Nombre de pages
137
Écrit en
2023/2024
Type
Examen
Contient
Questions et réponses
$30.49
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
SOLUTIONS2024 Chamberlain College Of Nursing
Voir profil
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
908
Membre depuis
3 année
Nombre de followers
696
Documents
5458
Dernière vente
1 semaine de cela
ALPHA STUDY CENTRE.

Alpha Academy is a dedicated study centre where you will find QUALITY & RELIABLE study resources that will help you prepare, revise and pass your examinations for all majors and modules in real TIME.. Good Luck from ALPHA ACADEMY.

3.7

180 revues

5
91
4
26
3
19
2
7
1
37

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions