100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Samenvatting Lineaire Algebra - Hfst 10 Complexe eigenwaarden

Rating
-
Sold
-
Pages
2
Uploaded on
17-05-2024
Written in
2023/2024

Hfst 10: Complexe eigenwaarden gegeven door prof Willem Waegeman Deze samenvatting beslaat de cursus waaraan extra inzichten en bevindingen zijn toegevoegd + !!stappenplannen voor verschillende soorten oefeningen uit te werken!!

Institution
Course








Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
May 17, 2024
File latest updated on
July 10, 2024
Number of pages
2
Written in
2023/2024
Type
Summary

Subjects

Content preview

Hoofdstuk 10
Complexe eigenwaarden


Complexe vector- en matrixbewerkingen
Eigenschappen:

 𝑥̅̅̅̅̅̅̅
⃗ + 𝑦⃗ = 𝑥⃗̅ + 𝑦̅⃗
 ̅̅̅̅
𝛼𝑥⃗ = 𝛼 ∙ 𝑥⃗̅
 [𝐴̅]ij = ̅̅̅̅
[𝐴]ij → het element op de ide rij en jde kolom van de complex toegevoegde matrix is hetzelfde als
het element op de ide rij en jde kolom van A nemen + complex toegevoegde ervan nemen
 ̅𝑥⃗𝑦
̅̅̅⃗ = 𝑥⃗̅ ∙ 𝑦̅⃗



Berekenen van complexe eigenwaarden
Net hetzelfde als bij gewone eigenwaarden om de eigenwaarden/vectoren te berekenen, wel rekening houden
met de rekenregels voor complexe getallen

Als λ een complexe eigenwaarde is vd vierkante matrix A, dan is 𝝀̅ ook een eigenwaarde, z’n complex
toegevoegde



Discrete dynamische systemen
Stel een vierkante matrix A met complexe eigenwaarde λ = a – bi met een bijhorende eigenvector elem van ICn

A valt dan te schrijven als (ontbinding van A):


 Heeft niet met diagonalisatie te maken

Herschrijf A als = PCP-1

Met a het reëel deel van λ en b het imaginair deel in 𝜆 en in P de reële delen van de eigenvectoren die in de
eigenruimte dat horen bij die eigenwaarde onder elkaar en in de tweede kolom de imaginaire delen




!!!heeft niets met diagonalisatie te maken!!!

C kun je schrijven als de modulusmatrix R (herschaling met factor r) maal de rotatiematrix

Met R = de modulus op de hoofdiagonaal van de eigenwaarde = √𝑎2 + 𝑏²




a + bi zien als x + yi, rcost = x = a, -rsint = -y = -b, …

Als r = 1 zal er geen herschaling gebeuren, r>1 → verder van oorsprong
!!! -b in C stel λ = a - bi voor, worden veel fouten tegen gemaakt, je moet het dus niet nog eens negatief maken
$3.01
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached


Also available in package deal

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
BioEngineer Universiteit Gent
Follow You need to be logged in order to follow users or courses
Sold
75
Member since
2 year
Number of followers
7
Documents
76
Last sold
1 week ago
Bio Engineer Stach

Uitgebreide samenvattingen die telkens alles vanuit de powerpoint + extra in de les gezegd, bevatten. Daarbij probeer ik dit altijd op een overzichtelijke en mooie manier voor te stellen, want niemand heeft gezegd dat studeren saai moet zijn. Indien vragen, stuur gerust een bericht. Ik doe zelf ook nog bio-ingenieur en heb met deze samenvattingen altijd moeiteloos kunnen slagen.

4.0

3 reviews

5
1
4
1
3
1
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions